精英家教网 > 初中数学 > 题目详情

【题目】如图,在菱形ABCD中,∠BAD=60°,点M是AB的中点,P是对角线AC上的一个动点,若PM+PB的最小值是9,则AB的长是(
A.6
B.3
C.9
D.4.5

【答案】A
【解析】解:如图所示,连接DP,则根据菱形的对角线互相垂直平分,可得PD=BP, 当点M,P,D三点共线时,BP+MP=DP+MP=DM=9(最短),
连接BD,根据∠BAD=60°,可得△ABD是等边三角形,
∵点M是AB的中点,
∴DM⊥AB,
∴∠ADM=30°,
∵AM= =3
∴AD=2AM=6
∴AB=6
故选:A.

【考点精析】根据题目的已知条件,利用菱形的性质的相关知识可以得到问题的答案,需要掌握菱形的四条边都相等;菱形的对角线互相垂直,并且每一条对角线平分一组对角;菱形被两条对角线分成四个全等的直角三角形;菱形的面积等于两条对角线长的积的一半.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,C=90°,ACD沿AD折叠,使得点C落在斜边AB上的点E处.

(1)求证:BDE∽△BAC;

(2)已知AC=6,BC=8,求线段AD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=4,BC=3,将△ABC绕点A逆时针旋转,使点C落在线段AB上的点E处,点B落在点D处,则B、D两点间的距离为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明从路灯下A处向前走了5米,发现自己在地面上的影子长DE是2米,如果小明的身高为1.6米,那么路灯离地面的高度AB是(
A.4米
B.5.6米
C.2.2米
D.12.5米

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB=90°,过点C的直线MNABDAB边上一点,过点DDEBC,交直线MNE,垂足为F,连接CDBE.

(1)求证:CEAD

(2)当DAB中点时,四边形BECD是什么特殊四边形?说明你的理由;

(3)若DAB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形纸片ABCD中,AB=8 ,AD=10,点E是CD中点,将这张纸片依次折叠两次;第一次折叠纸片使点A与点E重合,如图2,折痕为MN,连接ME、NE;第二次折叠纸片使点N与点E重合,如图3,点B落到B′处,折痕为HG,连接HE,则tan∠EHG=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,长方体的长BE=15cm,AB=10cm,AD=20cm,MCH,CM=5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点M,需要爬行的最短距离是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=90°,BD为AC边上的中线,过点C作CE⊥BD于点E,过点A作BD的平行线,交CE的延长线于点F,在AF的延长线上截取FG=BD,连接BG、DF.若AG=13,BG=5,则CF的长为__

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线l1:y=x2﹣4的图象与x轴交于A,C两点,抛物线l2与l1关于x轴对称.

(1)直接写出l2所对应的函数表达式;
(2)若点B是抛物线l2上的动点(B与A,C不重合),以AC为对角线,A,B,C三点为顶点的平行四边形的第四个顶点为D,求证:D点在l2上.
(3)当点B位于l1在x轴下方的图象上,平行四边形ABCD的面积是否存在最大值和最小值?若存在,判断它是何种特殊平行四边形,并求出它面积的最值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案