精英家教网 > 初中数学 > 题目详情

【题目】二次函数的图象如图,给出下列四个结论:;②;③;④,其中正确结论的个数是(

A. 4 B. 3 C. 2 D. 1

【答案】B

【解析】

利用二次函数图象的相关知识与函数系数的联系,需要根据图形,逐一判断.

解:①因为二次函数图象与x轴有两个交点,所以b2-4ac>0正确,

②因为二次函数对称轴为x=-1,由图可得左交点的横坐标一定小于-2,所以4a-2b+c>0,故此项不正确,

③因为二次函数对称轴为x=-1,即-=-1所以2a-b=0正确,

④∵抛物线的对称轴是直线x=-1,

∴y=a-b+c的值最大,

即把x=m(m≠-1)代入得:y=am2+bm+c<a-b+c,

∴am2+bm<a-b,∴④正确;

正确的结论个数为3.

故选:B.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,在△ABC,BC=3,A=22.5°,将△ABC翻折使得点B与点A重合,折痕与边AC交于点P,如果AP=4,那么AC的长为_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,tanACB=2,D在△ABC内部,且AD=CD,ADC=90°,连接BD,若△BCD的面积为10,则AD的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,点DEBC边上,点FAC边上,将△ABD沿着AD翻折,使点B和点E重合,将△CEF沿着EF翻折,点C恰与点A重合.结论:①∠BAC=90°,②DE=EF,③∠B=2C,④AB=EC,正确的有(  )

A.①②③④B.③④C.①②④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市制米厂接到加工大米任务,要求5天内加工完220吨大米,制米厂安排甲、乙两车间共同完成加工任务,乙车间加工中途停工一段时间维修设备,然后改变加工效率继续加工,直到与甲车间同时完成加工任务为止.设甲、乙两车间各自加工大米数量y(吨)与甲车间加工时间s(天)之间的关系如图(1)所示;未加工大米w(吨)与甲加工时间x(天)之间的关系如图(2)所示,请结合图象回答下列问题:

(1)甲车间每天加工大米   吨,a=   

(2)求乙车间维修设备后,乙车间加工大米数量y(吨)与x(天)之间函数关系式.

(3)若55吨大米恰好装满一节车厢,那么加工多长时间装满第一节车厢?再加工多长时间恰好装满第二节车厢

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点A、D、C、F在同一条直线上,AB=DE,BC=EF,要使△ABC≌△DEF,还需要添加一个条件是(  )

A. ∠BCA=∠F; B. ∠B=∠E; C. BC∥EF D. ∠A=∠EDF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学兴趣活动课上,小明将等腰△ABC的底边BC与直线1重合,问:

1)已知ABAC6,∠BAC120°,点PBC边所在的直线l上移动,根据“直线外一点到直线上所有点的连线中垂线段最短”,小明发现AP的最小值是   

2)为进一步运用该结论,小明发现当AP最短时,在RtABP中,∠P90°,作了AD平分∠BAP,交BP于点D,点EF分别是ADAP边上的动点,连接PEEF,小明尝试探索PE+EF的最小值,为转化EF,小明在AB上截取AN,使得ANAF,连接NE,易证△AEF≌△AEN,从而将PE+EF转化为PE+EN,转化到(1)的情况,若BP3AB6AP3,则PE+EF的最小值为   

3)请应用以上转化思想解决问题(3),在直角△ABC中,∠C90°,∠B30°,AC10,点DCD边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,求线段CP的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线y=-2x+12分别与y轴,x轴交于AB两点,点My轴上,以点M为圆心的⊙M与直线AB相切于点D,连接MD.

(1)求证:△ADM∽△AOB.

(2)如果⊙M的半径为2,请写出点M的坐标,并写出以点为顶点,且过点M的抛物线的函数表达式.

(3)(2)的条件下,试问在此抛物线上是否存在点P,使以PAM三点为顶点的三角形与△AOB相似?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,ABAD,点B关于AC的对称点B′恰好落在CD上,若∠BAD100°,则∠ACB的度数为(  )

A.40°B.45°C.60°D.80°

查看答案和解析>>

同步练习册答案