精英家教网 > 初中数学 > 题目详情
证明:
(1)如图1,△ABC中,AB=AC,延长BC至D,使CD=BC,点E在边AC上,以CE、CD为邻边作?CDFE,过点C作CG∥AB交EF于点G.连接BG、DE.
①∠ACB与∠GCD有怎样的数量关系?请说明理由.
②求证:△BCG≌△DCE.
(2)如图2,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD、等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
①试说明AC=EF;
②求证:四边形ADFE是平行四边形.

【答案】分析:(1)①由AB=AC与CG∥AB,根据等边对等角与平行线的性质,易求得∠ACB=∠GCD;
②易证得CE=CD,∠BCG=∠ECD,然后由SAS证得:△BCG≌△DCE;
(2)①首先Rt△ABC中,由∠BAC=30°可以得到AB=2BC,又△ABE是等边三角形,EF⊥AB,由此得到AE=2AF,并且AB=2AF,然后即可证明△AFE≌△BCA,再根据全等三角形的性质即可证明AC=EF;
②根据①知道EF=AC,而△ACD是等边三角形,所以EF=AC=AD,并且AD⊥AB,而EF⊥AB,由此得到EF∥AD,再根据平行四边形的判定定理即可证明四边形ADFE是平行四边形.
解答:证明:(1)①∠ACB=∠GCD.
理由:∵AB=AC,
∴∠ABC=∠ACB,
∵CG∥AB,
∴∠ABC=∠GCD,
∴∠ACB=∠GCD;

②∵四边形CDFE是平行四边形,
∴∠CEG=∠ACB,∠CGE=∠GCD,
∴∠CEG=∠CGE,
∴CE=CG,
∵∠ACB+∠ECG=∠ECG+∠GCD,
即∠BCG=∠ECD,
在△BCG和△DCE中,

∴△BCG≌△DCE(SAS);

(2)①∵Rt△ABC中,∠BAC=30°,
∴AB=2BC,
又∵△ABE是等边三角形,EF⊥AB,
∴∠AEF=30°
∴AE=2AF,且AB=2AF,
∴AF=CB,
而∠ACB=∠AFE=90°,
在Rt△AFE和Rt△BCA中,

∴△AFE≌△BCA(HL),
∴AC=EF;

②由①知道AC=EF,
而△ACD是等边三角形,
∴∠DAC=60°
∴EF=AC=AD,且AD⊥AB,
而EF⊥AB,
∴EF∥AD,
∴四边形ADFE是平行四边形.
点评:此题考查了平行四边形的判定与性质、全等三角形的判定与性质、等腰三角形的性质以及等边三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,矩形ABCD中,点M从A点出发在线段AB上作匀速运动(不与A、B重合),同时点N从B点出发在线段BC上作匀速运动.
(1)如图1,若M为AB中点,且DM⊥MN.请在图中找出两对相似三角形:
 
 
_,②
 
 
,选择其中一对加以证明;
(2)①如图2,若AB=5,BC=3点M的速度为1个单位长度/秒,点N的速度为
12
个单位长度/秒,运动的时间为t秒.当t为何值时,△DAM与△MBN相似?请说明理由;
②如果把点N的速度改为a个单位长度/秒,其它条件不变,是否存在a的值,使得△DAM与△MBN和△DCN这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC和△DEC都是等腰直角三角形,C为它们的公共直角顶点,连AD,BE,F为线段AD的中点,连CF,
(1)如图1,当D点在BC上时,BE与CF的数量关系是
 
,位置关系是
 
,请证明.
精英家教网
(2)如图2,把△DEC绕C点顺时针旋转一个锐角,其他条件不变,问(1)中的关系是否仍然成立?如果成立请证明.如果不成立,请写出相应的正确的结论并加以证明.
(3)如图3,把△DEC绕C点顺时针旋转45°,若∠DCF=30°,直接写出
BGCG
的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知:如图所示,直线MA∥NB,∠MAB与∠NBA的平分线交于点C,过点C作一条直线l与两条直线MA、NB分别相交于点D、E.

(1)如图1所示,当直线l与直线MA垂直时,猜想线段AD、BE、AB之间的数量关系,请直接写出结论,不用证明;
(2)如图2所示,当直线l与直线MA不垂直且交点D、E都在AB的同侧时,(1)中的结论是否成立?如果成立,请证明:如果不成立,请说明理由;
(3)当直线l与直线MA不垂直且交点D、E在AB的异侧时,(1)中的结论是否仍然成立?如果成立,请说明理由;如果不成立,那么线段AD、BE、AB之间还存在某种数量关系吗?如果存在,请直接写出它们之间的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

25、已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN绕点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
AH=AB

(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC和△EDC中,∠ACB=∠ECD=90°,BC=k•AC,CD=k•CE.
(1)如图1,当k=1时,AE与BD的数量关系是:
 
,位置关系是:
 

(2)如图2,当k≠1时,请探索AE与BD的关系,并证明;
(3)如图3,在(2)的条件下,分别在BD、AE上取点M、N,使得BD=m•MD,AE=m•NE,试探索CN与CM的关系,并证明.
精英家教网

查看答案和解析>>

同步练习册答案