精英家教网 > 初中数学 > 题目详情
1.近期,我市中小学广泛开展了“传承中华文化,共筑精神家园”爱国主义读书教育活动,某中学为了解学生最喜爱的活动形式,以“我最喜爱的一种活动”为主题,进行随机抽样调查,收集数据整理后,绘制出以下两幅不完整的统计图表,请根据图中提供的信息,解答下面的问题:
最喜爱的一种活动统计表
活动形式征文讲故事演讲网上竞答其他
人数603039ab
(1)在这次抽样调查中,一共调查了多少名学生?扇形统计图中“讲故事”部分的圆心角是多少度?
(2)如果这所中学共有学生3800名,那么请你估计最喜爱征文活动的学生人数.

分析 (1)根据“演讲”的人数除以占的百分比,得到调查的总学生人数,并求出扇形统计图中“讲故事”部分的圆心角度数即可;
(2)求出最喜爱征文活动的学生人数占的百分比,乘以3800即可得到结果.

解答 解:(1)根据题意得:39÷13%=300(名),
则“讲故事”所占的比例为30÷300×100%=10%,
所以扇形统计图中“讲故事”部分的圆心角是10%×360°=36°,
则在这次抽样调查中,一共调查了300名学生,扇形统计图中“讲故事”部分的圆心角是36°;
(2)根据题意得:3800×20%=760(名),
则最喜爱征文活动的学生人数为760名.

点评 此题考查了扇形统计图,以及用样本估计总体,弄清题中的数据是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

11.如图,菱形ABCD的对角线相交于点O,AC=8,BD=6,以AB为直径作一个半圆,则图中阴影部分的面积为$\frac{25}{8}$π-6.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,将矩形纸片ABCD(AD>AB)折叠,使点C刚好落在线段AD上,且折痕分别与边BC,AD相交,设折叠后点C,D的对应点分别为点G,H,折痕分别与边BC,AD相交于点E,F.
(1)判断四边形CEGF的形状,并证明你的结论;
(2)若AB=3,BC=9,求线段CE的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.为了解茂名某水果批发市场荔枝的销售情况,某部门对该市场的三种荔枝品种A、B、C在6月上半月的销售进行调查统计,绘制成如下两个统计图(均不完整).请你结合图中的信息,解答下列问题:
(1)该市场6月上半月共销售这三种荔枝多少吨?
(2)该市场某商场计划六月下半月进货A、B、C三种荔枝共500千克,根据该市场6月上半月的销售情况,求该商场应购进C品种荔枝多少千克比较合理?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.在等边△ABC中,

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明PA=PM,只需证△APM是等边三角形;
想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;
想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…
请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,正方形ABCO的顶点C、A分别在x轴、y轴上,BC是菱形BDCE的对角线,若∠D=60°,BC=2,则点D的坐标是(2+$\sqrt{3}$,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)计算:($\frac{1}{2}$)-1-$\sqrt{27}$-(π-2016)0+9tan30°;
(2)解分式方程:$\frac{x-3}{x-2}$+1=$\frac{3}{x-2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.先化简,再求代数式($\frac{2}{a+1}$-$\frac{2a-3}{{a}^{2}-1}$)÷$\frac{1}{a+1}$的值,其中a=2sin60°+tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

11.地球上的海洋面积为361 000 000平方千米,数字361 000 000用科学记数法表示为(  )
A.36.1×107B.0.361×109C.3.61×108D.3.61×107

查看答案和解析>>

同步练习册答案