精英家教网 > 初中数学 > 题目详情
如图,抛物线y=
1
2
x2+bx+c与y轴交于点C,与x轴相交于A,B两点,点A的坐标为(2,0),点C的坐标为(0,-4).
(1)求抛物线的解析式;
(2)点Q是线段OB上的动点,过点Q作QEBC,交AC于点E,连接CQ,设OQ=m,当△CQE的面积最大时,求m的值,并写出点Q的坐标;
(3)若平行于x轴的动直线,与该抛物线交于点P,与直线BC交于点F,D的坐标为(-2,0),则是否存在这样的直线l,使OD=DF?若存在,求出点P的坐标;若不存在,请说明理由.
(1)把x=2,y=0;x=0,y=-4代入y=
1
2
x2+bx+c,
0=
1
2
×4+2b+c
-4=c.

解得
b=1
c=-4.

故所求抛物线的解析式为y=
1
2
x2+x-4.

(2)如图1,作EG⊥AQ于点G,由(1)可知,点B的坐标为(-4,0).
∴CO=4,AB=6,AQ=m+2.
∵QEBC,
∴△AEQ△ACB.
EG
CO
=
AQ
AB
,即
EG
4
=
m+2
6

∴EG=
2m+4
3

∴S△CQE=S△ACQ-S△AEQ=
1
2
AQ•CO-
1
2
AQ•EG
=
1
2
(m+2)(4-
2m+4
3
)

=-
1
3
m2+
2
3
m+
8
3
=-
1
3
(m-1)2+3

当m=1时,当△CQE的面积最大.
此时,点Q的坐标为(-1,0).

(3)若存在,如图2,
∵点B的坐标为(-4,0),D的坐标为(-2,0),DO=DF,
∴DB=DF.∴∠ABC=∠BFD.
∵OC=OB,∠ABC=∠BCO=45°.
∴∠ABC=∠BFD=45°.
∴FD⊥AB.
则F(-2,-2).
1
2
x2+x-4=-2.
解得x1=-1-
5
,x2=-1+
5

所以点P的坐标为(-1-
5
,-2)或(-1+
5
,-2).
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=
1
2
x2+bx与直线y=2x交于点O(0,0),A(a,12).点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E.
(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造矩形BCDE,设点D的坐标为(m,n),求出m,n之间的关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

二次函数y=ax2+bx+c的图象与x轴交于B、C两点,与y轴交于A点.
(1)根据图象确定a、b、c的符号,并说明理由;
(2)如果点A的坐标为(0,-3),∠ABC=45°,∠ACB=60°,求这个二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2+bx(a≠0)的顶点在直线y=-
1
2
x-1
上,且过点A(4,0).
(1)求这个抛物线的解析式;
(2)设抛物线的顶点为P,是否在抛物线上存在一点B,使四边形OPAB为梯形?若存在,求出点B的坐标;若不存在,请说明理由;
(3)设点C(1,-3),请在抛物线的对称轴确定一点D,使|AD-CD|的值最大,请直接写出点D的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,⊙O1和⊙O2外切于点C,AB是⊙O1和⊙O2的外公切线,A、B为切点,且∠ACB=90°.以AB所在直线为轴,过点C且垂直于AB的直线为轴建立直角坐标系,已知AO=4,OB=1.
(1)分别求出A、B、C各点的坐标;
(2)求经过A、B、C三点的抛物线y=ax2+bx+c的解析式;
(3)如果⊙O1的半径是5,问这条抛物线的顶点是否落在两圆连心线O1O2上?如果在,请证明;如果不在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,抛物线与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,4),顶点为(1,5).
(1)求该抛物线的函数关系式;
(2)连接AC、BC,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=ax2+bx+c经过原点(0,0)和A(1,-3),B(-1,5)两点.
(1)求抛物线的解析式;
(2)设抛物线与x轴的另一个交点为C,以OC为直径作⊙M,如果过抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连接MD,已知E点的坐标为(0,m),求四边形EOMD的面积(用含m的代数式表示);
(3)延长DM交⊙M于点N,连接ON,OD,当点P在(2)的条件下运动到什么位置时,能使得四边形EOMD和△DON的面积相等,请求出此时点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形ABCD是世纪广场的示意图,上底AD=90m,下底BC=150m,高100m,虚线MN是梯形ABCD的中位线.要设计修建宽度相同的一条横向和两条纵向大理石通道,横向通道EGHF位于MN两旁,且EF、GH与MN之间的距离相等,两条纵向通道均与BC垂直,设通道宽度为xm.
(1)试用含x的代数式表示横向通道EGHF的面积s1
(2)若三条通道的面积和恰好是梯形ABCD面积的
1
4
时,求通道宽度为x;
(3)经测算大理石通道的修建费用y1(万元)与通道宽度为xm的关系式为:y1=14x,广场其余部分的绿化费用为0.05万元/m2,若设计要求通道宽度x≤8m,则宽度x为多少时,世纪广场修建总费用最少?最少费用为多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,一名男生推铅球,铅球行进高度y(单位:m)与水平距离x(单位:m)之间的关系是y=-
1
12
x2+
2
3
x+
5
3
.则他将铅球推出的距离是______m.

查看答案和解析>>

同步练习册答案