【题目】如图,已知中,为直径,为的切线,交的延长线于点,.
求的度数;
若点在上,,垂足为,,求图中阴影部分的面积.(结果保留)
【答案】(1)30°;(2).
【解析】
(1)连接OC,如图,利用切线的性质得∠OCD=90°,则利用互余可计算出∠DOC=60°,然后根据等腰三角形的性质和三角形外角性质可求出∠A的度数;
(2)根据垂径定理得到CE=CF=2,再在Rt△OCE中利用解直角三角形求出OE、OC的长,然后根据扇形面积公式,利用图中阴影部分的面积=S扇形BOC﹣S△OCE进行计算即可.
(1)连接OC,如图,∵CD为⊙O的切线,∴OC⊥CD,∴∠OCD=90°,∴∠DOC=90°﹣∠D=90°﹣30°=60°.
∵OA=OC,∴∠A=∠OCA,而∠DOC=∠A+∠OCA,∴∠A=DOC=30°;
(2)∵CF⊥AB,∴CE=EF=CF=2.在Rt△OCE中,∵tan∠OCE==tan60°,∴OE=CE=2,∴OC=2OE=4,∴图中阴影部分的面积=S扇形BOC﹣S△OCE=﹣×2×=π﹣2.
科目:初中数学 来源: 题型:
【题目】在江苏卫视《最强大脑》节目中,搭载百度大脑的小度机器人以3:1的总战绩,斩获2017年度脑王巅峰对决的晋级资格,人工智能时代已经扑面而来.
某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.
(1)求该商家第一次购进机器人多少个?
(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,
(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.
(2)直接写出△ABC的面积为______.
(3)在x轴上画出点P,使PA+PC最小.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与实践
已知,在Rt△ABC中,AC=BC,∠C=90°,D为AB边的中点,∠EDF=90°,∠EDF绕点D旋转,它的两边分别交AC,CB(或它们的延长线)于点E,F.
(1)(问题发现)
如图1,当∠EDF绕点D旋转到DE⊥AC于点E时(如图1),
①证明:△ADE≌△BDF;
②猜想:S△DEF+S△CEF= S△ABC.
(2)(类比探究)
如图2,当∠EDF绕点D旋转到DE与AC不垂直时,且点E在线段AC上,试判断S△DEF+S△CEF与S△ABC的关系,并给予证明.
(3)(拓展延伸)
如图3,当点E在线段AC的延长线上时,此时问题(2)中的结论是否成立?若成立,请给予证明;若不成立,S△DEF,S△CEF,S△ABC又有怎样的关系?(写出你的猜想,不需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A(﹣2,2),B(﹣3,﹣2)(每个小正方形的边长均为1).
(1)若点D与点A关于y轴对称则点D的坐标为 .
(2)将点B向右平移5个单位,再向上平移2个单位得到点C,则点C的坐标为 .
(3)请在图中表示出D、C两点,顺次连接ABCD,并求出A、B、C、D组成的四边形ABCD的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com