解答:解:∠GPF=180°-∠α.
(1)证明:连接BD,连接CE.∵AB=AC、AD=AE,∠BAC=∠DAE
∴∠BAD=∠CAE∴△ABD≌△ACE,
∴∠ABD=∠ACE.∵G、P、F分别是BC、CD、DE的中点,
∴PG∥BD,PF∥CE.∴∠PGC=∠CBD,∠DPF=∠DCE=∠DCA+∠ACE=∠DCA+∠ABD,
∠DPG=∠PGC+∠BCD=∠CBD+∠BCD,
∠GPF=∠DPF+∠DPG=∠DCA+∠ABD+∠CBD+∠BCD=180°-∠BAC=180°-∠α,
即∠GPF=180°-∠α.
写探索过程要步步有据,写两步得(1分),写三步得(2分).
(2)选取图2证明:
连接BD,连接CE.
∵AB=AC、AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,
∴△ABD≌△ACE,(5分)
∴∠ABD=∠ACE.
设BD与CE交于点O,AC与BD交于点K,∠AKB=∠CKO,
∴∠BOC=∠BAC,∠COD=180°-∠α.
∵G、P、F分别是BC、CD、DE的中点,
∴PG∥BD,PF∥CE.(8分)
∴∠GPC=∠BDC,∠DPF=∠DCE,(9分)
∠GPF=180°-∠GPC-∠DPF=180°-∠BDC-∠DCE=∠COD,
即∠GPF=180°-∠α.(10分)
选取图3证明:
∵AB=AC、AD=AE,∴BD=CE,(3分)
∵G、P、F分别是BC、CD、DE的中点,∴PG∥BD,PF∥CE.(4分)
∴∠ADC=∠DPG,∠DPF=∠ACD,∠GPF=∠DPF+∠DPG=∠ADC+∠ACD
=180°-∠BAC=180°-∠α,即∠GPF=180°-∠α.(5分)