精英家教网 > 初中数学 > 题目详情

如图,正方形AOCB在平面直角坐标系中,点O为原点,点B在反比例函数)图象上,△BOC的面积为

(1)求反比例函数的关系式;
(2)若动点E从A开始沿AB向B以每秒1个单位的速度运动,同时动点F 从B开始沿BC向C以每秒个单位的速度运动,当其中一个动点到达端点时,另一个动点随之停止运动.若运动时间用t表示,△BEF的面积用表示,求出S关于t的函数关系式,并求出当运动时间t取何值时,△BEF的面积最大?
(3)当运动时间为秒时,在坐标轴上是否存在点P,使△PEF的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由.

解:(1)∵四边形AOCB为正方形 ,∴AB=BC=OC=OA。
设点B坐标为(),
,∴,解得
又∵点B在第一象限,∴点B坐标为(4,4)。
将点B(4,4)代入
∴反比例函数解析式为
(2)∵运动时间为t,动点E的速度为每秒1个单位,点F 的速度为每秒2个单位,
∴AE=t, BF
∵AB=4,∴BE=

∴S关于t的函数关系式为;当时,△BEF的面积最大。
(3)存在。
时,点E的坐标为(,4),点F的坐标为(4,),
①作F点关于轴的对称点F1,得F1(4,),经过点E、F1作直线,
由E,4),F1(4,)可得直线EF1的解析式是
时,,∴P点的坐标为(,0)。
②作E点关于轴的对称点E1,得E1,4),经过点E1、F作直线,
由E1,4),F(4,)可得直线E1F的解析式是
时,,∴P点的坐标为(0,)。
综上所述,P点的坐标分别为(,0)或(0,)。

解析试题分析:(1)根据正方形的性质和△BOC的面积为,列式求出点B的坐标,代入,即可求得k,从而求得反比例函数的关系式。
(2)根据双动点的运动时间和速度表示出BF和BE,即可求得S关于t的函数关系式,化为顶点式即可根据二次函数的最值原理求得△BEF的面积最大时t的值。
(3)根据轴对称的原理,分F点关于轴的对称点F1和E点关于轴的对称点E1两种情况讨论。

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

甲车在弯路做刹车试验,收集到的数据如下表所示:

速度(千米/时)
0
5
10
15
20
25

刹车距离(米)
0

2

6


(1)请用上表中的各对数据作为点的坐标,在如图所示的坐标系中画出刹车距离(米)与速度(千米/时)的函数图象,并求函数的解析式;

(2)在一个限速为40千米/时的弯路上,甲、乙两车相向而行,同时刹车,但还是相撞了.事后测得甲、乙两车刹车距离分别为12米和10.5米,又知乙车刹车距离(米)与速度(千米/时)满足函数,请你就两车速度方面分析相撞原因.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线与x轴交于A(1,0)、B(﹣3,0)两点,与y轴交于点C(0,3),设抛物线的顶点为D.

(1)求该抛物线的解析式与顶点D的坐标.
(2)试判断△BCD的形状,并说明理由.
(3)探究坐标轴上是否存在点P,使得以P、A、C为顶点的三角形与△BCD相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知抛物线抛物线(n为正整数,且0<a1<a2<…<an)与x轴的交点为An-1(bn-1,0)和An(bn,0),当n=1时,第1条抛物线与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.
(1)求a1,b1的值及抛物线y2的解析式;
(2)抛物线y3的顶点坐标为(              );
依此类推第n条抛物线yn的顶点坐标为(              );
所有抛物线的顶点坐标满足的函数关系是       
(3)探究下列结论:
①若用An-1An表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出An-1An
②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系中,顶点为(3,4)的抛物线交 y轴与A点,交x轴与B、C两点(点B在点C的左侧),已知A点坐标为(0,-5).

(1)求此抛物线的解析式;
(2)过点B作线段AB的垂线交抛物线与点D,如果以点C为圆心的圆与直线BD相切,请判断抛物线的对称轴与⊙C的位置关系,并给出证明.
(3)在抛物线上是否存在一点P,使△ACP是以AC为直角边的直角三角形.若存在,求点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在平面直角坐标系xOy中,抛物线的顶点为A,与y轴的交点为B,连结AB,AC⊥AB,交y轴于点C,延长CA到点D,使AD=AC,连结BD.作AE∥x轴,DE∥y轴.

(1)当m=2时,求点B的坐标;
(2)求DE的长?
(3)①设点D的坐标为(x,y),求y关于x的函数关系式?②过点D作AB的平行线,与第(3)①题确定的函数图象的另一个交点为P,当m为何值时,以,A,B,D,P为顶点的四边形是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知函数是常数)
(1)若该函数的图像与轴只有一个交点,求的值;
(2)若点在某反比例函数的图像上,要使该反比例函数和二次函数都是的增大而增大,求应满足的条件以及的取值范围;
(3)设抛物线轴交于两点,且,在轴上,是否存在点P,使△ABP是直角三角形?若存在,求出点P及△ABP的面积;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

抛物线y=﹣x2平移后的位置如图所示,点A,B坐标分别为(﹣1,0)、(3,0),设平移后的抛物线与y轴交于点C,其顶点为D.

(1)求平移后的抛物线的解析式和点D的坐标;
(2)∠ACB和∠ABD是否相等?请证明你的结论;
(3)点P在平移后的抛物线的对称轴上,且△CDP与△ABC相似,求点P的坐标.

查看答案和解析>>

同步练习册答案