精英家教网 > 初中数学 > 题目详情
19.如图,在梯形ABCD中,AD∥BC,∠B=90°,AD=1,AB=$\frac{3}{2}$,BC=2,P是BC边上的一个动点(点P与点B不重合),DE⊥AP于点E.设AP=x,DE=y.求y关于x的函数关系式,并指出自变量x的取值范围.

分析 由AD∥BC得出∠DAE=∠APB,结合两个直角得出△ADE∽△PAB,由相似三角形的性质即可得出y与x之间的关系,由P是BC边上的一个动点(点P与点B不重合)可得出x的取值范围.

解答 解:连接AC,如图,

由勾股定理可得AC=$\sqrt{A{B}^{2}+B{C}^{2}}$=$\frac{5}{2}$,
∵P是BC边上的一个动点(点P与点B不重合),
∴AB≤AP<AC,即$\frac{3}{2}$≤x<$\frac{5}{2}$.
∵AD∥BC,
∴∠DAE=∠APB(两直线平行,内错角相等),
又∵∠ABP=∠DEA=90°,
∴△ADE∽△PAB,
∴$\frac{DE}{AB}$=$\frac{AD}{AP}$,即$\frac{y}{\frac{3}{2}}$=$\frac{1}{x}$,
∴y关于x的函数关系式:y=$\frac{3}{2x}$($\frac{3}{2}$≤x<$\frac{5}{2}$).

点评 本题考查了动点问题的函数图象、相似三角形的判定以及性质,解题的关键是找出△ADE∽△PAB,依据相似三角形的性质即可得出y与x之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.已知a是整数,且满足不等式组$\left\{\begin{array}{l}{6-a>0}\\{3a-12>0}\end{array}\right.$,则a的值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.如图,抛物线y=x2-4x+3与坐标轴交于A,B,C三点,点P为对称轴右侧的抛物线上一点,若tan∠PCB=2,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,动点P从A开始沿折线AC→CB→BA运动,点P在AC,CB,BA边上运动的速度分别为每秒3,4,5个单位.直线l从与AC重合的位置开始,以每秒$\frac{4}{3}$个单位的速度沿CB方向平行移动,即移动过程中保持l∥AC,且分别与CB,AB边交于E,F两点,点P与直线l同时出发,设运动的时间为t秒,当点P第一次回到点A时,点P与直线l同时停止运动.当点P在BA边上运动时,作点P关于直线EF的对称点,记为点Q,若形成的四边形PEQF为菱形,则t=$\frac{6}{5}$或$\frac{30}{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.小明和小芳、小冲今天又在一起切磋学习数学的体会,小明给出了如图题目:

如图1,已知直线AB∥CD,点E,F分别在AB,CD上,如果在AB,CD之间有一点P,连接PE,PF,你认为∠AEP与∠CFP及∠P之间有怎样的数量关系?证明你的结论.
小冲看完题目后,立即补完图形,很快提出猜想,并进行了证明.他的猜想是:∠AEP+∠CFP+∠EPF=360°.其证明过程如下:
证明:如图2,过点P作直线MN∥AB,
因为MN∥AB(已作),
所以∠AEP+∠EPM=180°(两直线平行,同旁内角互补),
因为AB∥CD(已知),MN∥AB(已作),
所以MN∥CD(平行于同一直线的两直线互相平行),
所以∠CFP+∠FPM=180°(两直线平行,同旁内角互补),
所以∠AEP+∠CFP+∠EPF=360°.
小芳看过了小冲的猜想和证明后提出质疑,认为小冲的猜想不完整,你认为小芳的质疑正确吗?说说你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点.现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分,请你帮助计算一下,哪种架设方案最省电线.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知,如图,AD是△ABC的高,DE⊥AB,DF⊥AC,垂足分别为E、F,且DE=DF,求证:AB=AC.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.已知函数y=$\frac{k}{x}$(k≠0)的图象过点(a,b),则它必经过的另一点是(  )
A.(a,-b)B.(-a,b)C.(-b,a)D.(b,a)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图所示,已知△ABC中AD,BE分别是BC,AC的高,且BD=AD.求证:
①DF=DC;
②BC=AD+DF.

查看答案和解析>>

同步练习册答案