4£®Ä³Ð£ÎªÁËÑ¡°ÎѧÉú²Î¼Ó¡°ºº×ÖÌýд´óÈü¡±£¬¶Ô¾ÅÄ꼶һ°à¡¢¶þ°à¸÷10ÃûѧÉú½øÐкº×ÖÌýд²âÊÔ£¬¼Æ·Ö²ÉÓÃ10·ÖÖÆ£¨µÃ·Ö¾ùÈ¡ÕûÊý£©£¬³É¼¨´ïµ½6·Ö»ò6·ÖÒÔÉÏΪ¼°¸ñ¡¢´ïµ½9·Ö»ò10·ÖÒÔÉÏΪÓÅÐ㣮Õâ20λͬѧµÄ³É¼¨Óëͳ¼ÆÊý¾ÝÈç±í£º
ÐòºÅ12345678910ƽ¾ùÊýÖÐλÊýÖÚÊý·½²î¼°¸ñÂÊÓÅÐãÂÊ
Ò»°à5889810108557.68a3.8270%30%
¶þ°à1066910457108b7.5104.9480%40%
£¨1£©ÔÚ±íÖУ¬a=8£¬b=7.5£»
£¨2£©ÓÐÈË˵¶þ°àµÄ¼°¸ñÂÊ¡¢ÓÅÐãÂʸßÓÚÒ»°à£¬ËùÒÔ¶þ°àµÄ³É¼¨±ÈÒ»°àºÃ£¬µ«Ò²ÓÐÈ˼á³ÖÈÏΪһ°à³É¼¨±È¶þ°àºÃ£¬ÇëÄã¸ø³öÖ§³ÖÒ»°à³É¼¨ºÃµÄÁ½ÌõÀíÓÉ£»
£¨3£©Èô´ÓÕâÁ½°à»ñÂú·ÖµÄͬѧÖÐËæÒâ³é1Ãûͬѧ²Î¼Ó¡°ºº×ÖÌýд´óÈü¡±£¬Çó²ÎÈüͬѧǡºÃÊÇÒ»°àͬѧµÄ¸ÅÂÊ£®

·ÖÎö 1£©·Ö±ðÓÃƽ¾ùÊýµÄ¼ÆË㹫ʽºÍÖÚÊýµÄ¶¨Òå½â´ð¼´¿É£»
£¨2£©ÓÉƽ¾ùÊýºÍ·½²îÇó½â¼´¿É£»
£¨3£©ÓɸÅÂʹ«Ê½ÈÝÒ×Çó³ö½á¹û£®

½â´ð ½â£º£¨1£©£©¡ßÊý¾Ý8³öÏÖÁË4´Î£¬×î¶à£¬
¡àÖÚÊýa=8£»
b=$\frac{10¡Á3+9+8+7+6¡Á2+5+4}{10}$=7.5£»
¹Ê´ð°¸Îª£º8£¬7.5£»    
£¨2£©Èç¢ÙÒ»°àµÄƽ¾ù·Ö±È¶þ°à¸ß£¬ËùÒÔÒ»°à³É¼¨±È¶þ°àºÃ£»
¢ÚÒ»°àѧÉúµÃ·ÖµÄ·½²î±È¶þ°àС£¬ËµÃ÷Ò»°à³É¼¨±È¶þ°àÎȶ¨£»    
£¨3£©Ò»¹²ÓÐ5ÃûÂú·Öͬѧ£¬Ã¿ÈËÿ³éµ½µÄ¿ÉÄÜÐÔÏàͬ£¬ÆäÖÐÒ»°àÂú·ÖµÄͬѧÓÐ2룬
¡à²ÎÈüͬѧǡºÃÊÇÒ»°àͬѧµÄ¸ÅÂÊΪ$\frac{1}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼ÓȨƽ¾ùÊý¡¢ÖÚÊý¡¢ÖÐλÊý¡¢·½²î¼°ÁбíÓëÊ÷״ͼ¡¢¸ÅÂʹ«Ê½£»½âÌâµÄ¹Ø¼üÊÇÄܹ»Áбí»òÊ÷״ͼ½«ËùÓеȿÉÄܵĽá¹ûÁоٳöÀ´£¬ÄѶȲ»´ó£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®Èçͼ£¬ÒÑÖªÒ»´Îº¯Êýy=kx+3ºÍy=-x+bµÄͼÏó½»ÓÚµãP£¨2£¬4£©£¬Ôò¹ØÓÚxµÄ·½³Ìkx+3=-x+bµÄ½âÊÇx=2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

15£®ÒÑÖªÒ»´Îº¯Êýy=-x+3µÄͼÏóÓëxÖá½»ÓÚµãA¡¢ÓëyÖá½»ÓÚµãB£¬BC¡ÎxÖᣬÇÒ¡ÏACBµÄÕýÇÐֵΪ3£®
£¨1£©ÇóµãA¡¢B¡¢CµÄ×ø±ê£»
£¨2£©Èç¹û¶þ´Îº¯ÊýͼÏó¾­¹ýA¡¢B¡¢CÈýµã£¬ÊÔÇó¸ÃÅ×ÎïÏߵĽâÎöʽ¼°¶¥µãMµÄ×ø±ê£»
£¨3£©Èç¹ûÔÚyÖáÉÏÓÐÒ»µãD£¬Ê¹µÃ¡÷ABDÓë¡÷ABCÏàËÆ£¬ÇóµãDµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉÆÓÚ˼¿¼µÄСÃ÷Ôڽⷽ³Ì×é$\left\{\begin{array}{l}{2x+5y=3¢Ù}\\{4x+11y=5¢Ú}\end{array}\right.$ʱ£¬²ÉÓÃÁËÒ»ÖÖ¡°ÕûÌå´ú»»¡±µÄ½â·¨£º
½â£º½«·½³Ì¢Ú±äÐΣº4x+10y+y=5£¬¼´2£¨2x+5y£©+y=5¢Û
    °Ñ·½³Ì¢Ù´úÈë¢ÛµÃ£º2¡Á3+y=5£¬¡ày=-1
    °Ñy=-1´úÈë¢ÙµÃx=4£¬¡à·½³Ì×éµÄ½âΪ$\left\{\begin{array}{l}{x=4}\\{y=-1}\end{array}\right.$£®
ÇëÄã½â¾öÒÔÏÂÎÊÌ⣺
£¨1£©Ä£·ÂСÃ÷µÄ¡°ÕûÌå´ú»»¡±·¨½â·½³Ì×é$\left\{\begin{array}{l}{2x-y=1¢Ù}\\{6x-2y=6¢Ú}\end{array}\right.$£»
£¨2£©ÒÑÖªx£¬yÂú×ã·½³Ì×é$\left\{\begin{array}{l}{2{x}^{2}-xy+18{y}^{2}=33¢Ù}\\{3{x}^{2}+2xy+27{y}^{2}=60¢Ú}\end{array}\right.$
¢ÙÇóx2+9y2µÄÖµ£»
¢ÚÇóx+3yµÄÖµ£®[²Î¿¼¹«Ê½£¨a+b£©2=a2+2ab+b2]£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÎªÁËÈøü¶àµÄʧѧ¶ùͯÖØ·µÐ£Ô°£¬Ä³ÉçÇø×éÖ¯¡°Ï×°®ÐÄÊÖÀ­ÊÖ¡±¾è¿î»î¶¯£¬¶ÔÉçÇø²¿·Ö¾è¿î»§Êý½øÐе÷²éºÍ·Ö×éͳ¼Æºó£¬½«Êý¾ÝÕûÀí³ÉÈçͼËùʾµÄͳ¼Æͼ£¨Í¼ÖÐÐÅÏ¢²»ÍêÕû£©£®
                  ¾è¿î»§Êý·Ö×éͳ¼Æ±í
 ×é±ð ¾è¿î¶î£¨x£©Ôª »§Êý ÆµÂÊ
 1¡Üx£¼100 2 0.04
 B 100¡Üx£¼200 10 0.2
 C 200¡Üx£¼300  0.4
 D 300¡Üx£¼400 14 a
 E x¡Ý400 4 0.08
Çë½áºÏÒÔÉÏÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣮
£¨1£©a=0.28£¬±¾´Îµ÷²éÑù±¾µÄÈÝÁ¿ÊÇ50£»
£¨2£©ÏÈÇó³öC×éµÄ»§ÊýΪ20»§£¬ÔÙ²¹È«¡°¾è¿î»§Êý·Ö×éͳ¼Æͼ¡±£»
£¨3£©Ö±½Óд³ö¾è¿î¶îµÄÖÐλÊýÂäÔÚC×飮

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®µ±$\frac{\sqrt{2x+1}}{x-1}$ÓÐÒâÒåʱ£¬xµÄÈ¡Öµ·¶Î§ÊÇx¡Ý-$\frac{1}{2}$ÇÒx¡Ù1£¬
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬Ë³´ÎÁ¬½ÓËıßÐÎABCD¸÷±ßÖеãµÃµ½ËıßÐÎEFGH£¬ÒªÊ¹ËıßÐÎEFGHΪ¾ØÐΣ¬Ó¦Ìí¼ÓµÄÌõ¼þÊÇ£¨¡¡¡¡£©
A£®AB¡ÎCDB£®AB=CDC£®AC¡ÍBDD£®AC=BD

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®£¨1£©½â·½³Ì£»$\frac{3}{2x-2}$+$\frac{1}{1-x}$=3
£¨2£©ÏÈ»¯¼ò£º£¨$\frac{a+3}{a-2}+\frac{1}{2-a}$£©¡Â$\frac{{a}^{2}-4}{3}$ÇëÔÚ2ºÍ3ÖÐÑ¡ÔñÒ»¸öºÏÊʵÄÊý´úÈëÇóÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®½â·½³Ì×é$\left\{\begin{array}{l}{5x-y=4}\\{\frac{x}{2}+1=\frac{y}{3}}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸