分析 有AB=AC,AD=AE,根据等腰三角形的性质得∠B=∠C,∠ADE=∠AED,再根据全等三角形的判定方法易证△ABE≌△ACD,根据全等的性质得BE=CD,利用等式的性质有BE-DE=CD-DE,即有BD=CE.
解答 解:∵AB=AC,
∴∠B=∠C,
∵AD=AE,
∴∠ADE=∠AED,
在△ABE与△ACD中,
∵$\left\{\begin{array}{l}{∠B=∠C}\\{∠AEB=∠ADC}\\{AB=AC}\end{array}\right.$,
∴△ABE≌△ACD(AAS),
∴BE=CD,
∴BE-DE=CD-DE,
即BD=CE.
故答案为:∠B=∠C;AD=AE;AAS;BE=CD;BE-DE=CD-DE.
点评 本题考查了全等三角形的判定与性质:有两组角分别相等,且其中一组角所对的边对应相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰三角形的性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 16 | B. | 32 | C. | 8$\sqrt{3}$ | D. | 16$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com