18£®Èçͼ£¬Ö±Ïßy=kx+k½»xÖᣬyÖá·Ö±ðÓÚA£¬C£¬Ö±ÏßBC¹ýµãC½»xÖáÓÚB£¬OC=3OA£¬¡ÏCBA=45¡ã£®
£¨1£©ÇóÖ±ÏßBCµÄ½âÎöʽ£»
£¨2£©¶¯µãP´ÓA³ö·¢ÑØÉäÏßABÔÈËÙÔ˶¯£¬ËÙ¶ÈΪ2¸öµ¥Î»/Ã룬Á¬½ÓCP£¬Éè¡÷PBCµÄÃæ»ýΪS£¬µãPµÄÔ˶¯Ê±¼äΪtÃ룬ÇóSÓëtÖ®¼äµÄº¯Êý¹Øϵʽ£¬Ö±½Óд³ötµÄÈ¡Öµ·¶Î§£»
£¨3£©ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±µãPÔÚABµÄÑÓ³¤ÏßÉÏÔ˶¯Ê±£¬¹ýµãO×÷OD¡ÍPCÓÚD£¬½»BCÓÚµãE£¬Á¬½ÓAE£¬µ±¡ÏEAB=¡ÏCPAʱ£¬ÔÚ×ø±êÖáÉÏÓеãK£¬ÇÒKC=KP£¬ÇóµãKµÄ×ø±ê£®

·ÖÎö £¨1£©Áîy=0£¬¼´¿ÉÇóµÃAµÄ×ø±ê£¬¸ù¾ÝOC=3OA¼´¿ÉÇóµÃCµÄ×ø±ê£¬ÔÙ¸ù¾Ý¡ÏCBA=45¡ã£¬¼´¡÷BOCµÄµÈÑüÖ±½ÇÈý½ÇÐΣ¬ÔòBµÄ×ø±ê¼´¿ÉÇóµÃ£¬È»ºóÀûÓôý¶¨ÏµÊý·¨ÇóµÃBCµÄ½âÎöʽ£»
£¨2£©·Ö³ÉPÔÚABºÍÔÚABµÄÑÓ³¤ÏßÉÏÁ½ÖÖÇé¿ö½øÐÐÌÖÂÛ£¬ÀûÓÃÈý½ÇÐÎÃæ»ý¹«Ê½¼´¿ÉÇó½â£»
£¨3£©ÉèPµÄ×ø±êÊÇ£¨2t-1£¬0£©£¬ÀûÓôý¶¨ÏµÊý·¨ÇóµÄPCµÄ½âÎöʽ£¬O×÷OD¡ÍPCÓÚD£¬Á¬½ÓAD£¬µ±¡ÏDAB=¡ÏCPA£¬ÔòDµÄºá×ø±êÓëABµÄÖеãµÄºá×ø±êÏàµÈ£¬ÇÒDµ½ABµÄ¾àÀëµÈÓÚ$\frac{1}{2}$AB£¬ÔòDµÄ×ø±ê¼´¿ÉÀûÓÃt±íʾ³öÀ´£¬È»ºó´úÈëPCµÄ½âÎöʽÇóµÃtµÄÖµ£¬¼´¿ÉµÃµ½PµÄ×ø±ê£¬½ø¶øÇó½â£®

½â´ð ½â£º£¨1£©ÔÚy=kx+kÖУ¬Áîy=0£¬Ôòx=-1£¬¼´AµÄ×ø±êÊÇ£¨-1£¬0£©£®
¡ßOC=3OA£¬
¡àOC=3£¬¼´CµÄ×ø±êÊÇ£¨0£¬3£©£®
¡ß¡ÏCBA=45¡ã£¬
¡à¡ÏOCB=¡ÏCBA=45¡ã£¬
¡àOB=OC=3£¬ÔòBµÄ×ø±êÊÇ£¨3£¬0£©£®
ÉèBCµÄ½âÎöʽÊÇy=kx+b£¬Ôò$\left\{\begin{array}{l}{3k+b=0}\\{b=3}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{k=-1}\\{b=3}\end{array}\right.$£¬
ÔòBCµÄ½âÎöʽÊÇy=-x+3£»

£¨2£©µ±0£¼t¡Ü2ʱ£¬PÔÚÏ߶ÎABÉÏ£¬ÔòBP=4-2t£¬
ÔòS=$\frac{1}{2}$£¨4-2t£©¡Á3=-3t+6£»
µ±t£¾2ʱ£¬OP=2t-4£¬ÔòS=$\frac{1}{2}$¡Á3£¨2t-4£©£¬¼´S=3t-6£»

£¨3£©×÷DF¡ÍABÓÚµãF£®
¡ßPµÄ×ø±êÊÇ£¨2t-1£¬0£©£¬AµÄ×ø±êÊÇ£¨-1£¬0£©£®
¡àDµÄºá×ø±êÊÇ$\frac{2t-1-1}{2}$=t-1£®
¡ßAD¡ÍCP£¬¡ÏDAB=¡ÏCPA£¬ÔòAD=DP£¬
¡à¡÷ADBÊǵÈÑüÖ±½ÇÈý½ÇÐΣ¬
ÓÖ¡ßDF¡ÍABÓÚµãF£¬
¡àDF=$\frac{1}{2}$AP=t£¬¼´DµÄ×ø±êÊÇ£¨t-1£¬t£©£¬
ÉèPCµÄ½âÎöʽÊÇy=mx+n£¬Ôò$\left\{\begin{array}{l}{n=3}\\{£¨2t-1£©m+n=0}\end{array}\right.$£¬
½âµÃ£º$\left\{\begin{array}{l}{m=\frac{3}{1-2t}}\\{n=3}\end{array}\right.$£¬
ÔòPCµÄ½âÎöʽÊÇy=$\frac{3}{1-2t}$x+3£¬
°ÑDµÄ×ø±êÊÇ£¨t-1£¬t£©£¬´úÈë½âÎöʽµÃ£¬$\frac{3}{1-2t}$•£¨t-1£©=t£¬
½âµÃ£ºt=2»ò0£¨ÉáÈ¥£©£®
ÔòPµÄ×ø±êÊÇ£¨3£¬0£©£®
ÔòPCµÄ½âÎöʽÊÇy=-x+3£®
ÔòBÓëPÖغϣ¬¡ßOC=OB£¬KC=KP£¬
¡àKÓëOÖغϣ¬¼´KµÄ×ø±êÊÇ£¨0£¬0£©£®

µãÆÀ ±¾Ì⿼²éÁË´ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽ£¬ÒÔ¼°µÈÑüÖ±½ÇÈý½ÇÐεÄÅж¨ÓëÐÔÖÊ£¬½âÌâµÄ¹Ø¼üÊÇѧ»áÀûÓòÎÊý½â¾öÎÊÌ⣬ÕýÈ·ÇóµÃDµÄ×ø±êÊDZ¾ÌâµÄÍ»ÆƵ㣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬Ö±Ïßl1¶ÔÓ¦µÄº¯Êý±í´ïʽΪy=2x£¬Ö±Ïßl2ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚµãA£¬B£¬ÇÒl1¡Îl2£¬OA=2£¬ÔòÏ߶ÎOBµÄ³¤Îª£¨¡¡¡¡£©
A£®3B£®4C£®2$\sqrt{2}$D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÏÂÃæÊÇÎÒȥij¹«Ô°Õ¼µØ·Ö²¼Çé¿öͳ¼Æͼ£º
£¨1£©ºþÃæÕ¼µØÃæ»ý×î´ó£¬Â·ÃæÕ¼µØÃæ»ý×îС£®
£¨2£©É½ÇðÕ¼¹«Ô°µÄ22%£®
£¨3£©¼ÙÉ蹫԰ռµØ1200¹«Ç꣬ÇëÌîдÏÂ±í£®
Õ¼µØÀàÐͺþÃæɽÇð·ÃæÆäËü
Õ¼µØÃæ»ý£¨¹«Ç꣩498264102336

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®£¨1£©Èçͼ1£¬ÔÚƽÐÐËıßÐÎABCDÖУ¬Çë×÷³öÒ»ÌõÖ±Ïߣ¬½«Æä·Ö³ÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£»
£¨2£©Èçͼ2£¬ÔÚ¶à±ßÐÎABCDEFÖУ¬AB¡ÎCD¡ÎEF£¬AF¡ÎDE¡ÎBC£¬Çë×÷³öÒ»ÌõÖ±Ïߣ¬½«¸Ã¶à±ßÐηֳÉÃæ»ýÏàµÈµÄÁ½²¿·Ö£®£¨²»Ð´×÷·¨£¬±£Áô×÷ͼºÛ¼££©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÏÂÁиø³öµÄÌõ¼þÖУ¬ÄÜÅж¨ËıßÐÎABCDÊÇƽÐÐËıßÐεÄÊÇ£¨¡¡¡¡£©
A£®AB¡ÎCD£¬AD¡ÎBCB£®AB=AD£¬CB=CDC£®AB=CD£¬AC=BDD£®¡ÏA=¡ÏB£¬¡ÏC=¡ÏD

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

3£®ÒÑÖª¹ØÓÚx£¬yµÄ¶þÔªÒ»´Î·½³Ì×é$\left\{\begin{array}{l}{ax-by=4}\\{ax+by=6}\end{array}\right.$Óë·½³Ì×é$\left\{\begin{array}{l}{3x-y=5}\\{4x-7y=1}\end{array}\right.$µÄ½âÏàͬ£¬Ôò2a-b=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®Èçͼ£¬ÔÚÖ±½ÇÌÝÐÎABCDÖУ¬AB¡ÎCD£¬¡ÏBCD=90¡ã£¬AB=AD=10cm£¬BC=8cm£¬µãP´ÓµãA³ö·¢£¬ÒÔÿÃë2cmµÄËÙ¶ÈÑØÏ߶ÎABÏòµãB·½ÏòÔ˶¯£¬µãQ´ÓµãD³ö·¢£¬ÒÔÿÃë3cmµÄËÙ¶ÈÑØÏ߶ÎDCÏòµãCÔ˶¯£¬ÒÑÖª¶¯µãP¡¢Qͬʱ³ö·¢£¬µ«¸öµãPµ½´ïBµã»ðµãQµ½´ïCµãʱ£¬P¡¢QÔ˶¯Í£Ö¹£¬ÉèÔ˶¯Ê±¼äΪt£®
£¨1£©ÇóCDµÄ³¤£»
£¨2£©µ±ËıßÐÎPBQDΪƽÐÐËıßÐÎʱ£¬ÇóËıßÐÎPBQDµÄÖܳ¤£»
£¨3£©ÔÚµãP¡¢µãQµÄÔ˶¯¹ý³ÌÖУ¬ÊÇ·ñ´æÔÚijһʱ¿Ì£¬Ê¹µÃPQ¡ÍAB£¿Èô´æÔÚ£¬ÇëÇó³ötµÄÖµ²¢ËµÃ÷ÀíÓÉ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Ëæ×ÅÊî¼ÙµÄµ½À´£¬ÂÃÓÎÒµ½øÈëÍú¼¾£®¼×¡¢ÒÒÁ½¼ÒÂÃÐÐÉç½è´Ë»ú»áÍƳöÁËÍŹºÓŻݻ£®¼×ÂÃÐÐÉçÓŻݷ½Ê½Îª£ºÃ¿Î»ÓοͰ´Ô­¼ÛµÄÆßÕÛÊÕ·Ñ£»ÒÒÂÃÐÐÉçµÄÓŻݷ½Ê½Îª£º¿ÉÃâȥһλÓο͵ÄÂÃÓηÑÓã¬ÆäÓàÓοͰ´Ô­¼ÛµÄ°ËÕÛÊÕ·Ñ£®Á½¼ÒÂÃÐÐÉçµÄ·þÎñÏàͬ£¬ÇÒÔ­¼Û¶¼ÊÇÿÈË200Ôª£®Èôijµ¥Î»¼Æ»®×éÖ¯Ô±¹¤¼¯ÌåÂÃÓΣ¨¼¯ÌåÂÃÓεÄÈËÊý´óÓÚ4£©£®
£¨1£©·Ö±ðд³öÑ¡Ôñ¼×¡¢ÒÒÁ½¼ÒÂÃÐÐÉçÐèÖ§¸¶µÄÂÃÓÎ×Ü·ÑÓÃy£¨Ôª£©Óë¸Ãµ¥Î»Ô±¹¤¼¯ÌåÂÃÓεÄÈËÊýxÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©Èç¹ûÈÃÄã¾ö¶¨£¬ÄÇôѡÔñÄļÒÂÃÐÐÉç½ÏºÏË㣿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÎªÁ˱£»¤ÊÓÁ¦£¬Ñ§Ð£¼Æ»®¿ªÕ¹¡°°®ÑÛ»¤ÑÛ¡±ÊÓÁ¦±£½¡»î¶¯£¬ÎªÊ¹»î¶¯¸ü¾ßÓÐʵЧÐÔ£¬ÏȶÔѧÉúÊÓÁ¦Çé¿ö½øÐе÷²é£¬Ëæ»ú³éÈ¡40ÃûѧÉú£¬¼ì²éËûÃǵÄÊÓÁ¦£¬²¢»æÖƲ»ÍêÕûµÄÖ±·½Í¼£¨Êý¾Ý°üÀ¨×ó¶Ëµã²»°üÀ¨ÓҶ˵㣬¾«È·µ½0.1£©£¬Çë½áºÏÖ±·½Í¼µÄÐÅÏ¢½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©Í³¼ÆͼÖУ¬4.8¡Üx£¼5.0µÄѧÉúÊýÊÇ10ÈË£»
£¨2£©½«ÆµÊý·Ö²¼Ö±·½Í¼²¹³äÍêÕû£»
£¨3£©Èô»æÖÆ¡°Ñ§ÉúÊÓÁ¦ÉÈÐÎͳ¼Æͼ¡±£¬ÊÓÁ¦´ïµ½4.8¼°ÒÔÉÏΪ´ï±ê£¬ÔòÊÓΪ´ï±êѧÉúËù¶ÔÓ¦ÉÈÐεÄÔ²ÐĽǶÈÊýΪ135¡ã£»
£¨4£©ÈôȫУ¹²ÓÐ800ÃûѧÉú£¬ÔòÊÓÁ¦´ï±êµÄѧÉú¹À¼ÆÓÐ300Ãû£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸