精英家教网 > 初中数学 > 题目详情
如图1,在△ABC中,AB=AC,AB的垂直平分线MN交AB于N,交直线BC于点M.
(1)若∠A=70°,试求出∠NMB的度数;
(2)若∠A=40°时,如图2,再求∠NMB的度数;
(3)综合(1)、(2)小题,若∠A的度数为α(0°<α<90°),试写出∠NMB的度数.
分析:(1)根据等腰三角形的性质有AB=AC得到∠B=∠C,而∠A=70°,根据三角形内角和定理得到可计算出∠B,由NM垂直平分AB得到∠BNM=90°,然后利用互余即可求出
∠NMB的度数;
(2)与(1)的解法相同,只是∠A=40°;
(3)与(1)的解法相同,把∠A换成α.
解答:解:(1)在△ABC中,AB=AC,∠A=70°,
∴∠B=∠C=
180°-∠A
2
=55°

∵NM垂直平分AB,
∴∠BNM=90°,
∴∠NMB=∠BNM-∠B=90°-55°=35°;
(2)在△ABC中,AB=AC,∠A=40°
∴∠B=∠C=
180°-∠A
2
=70°

∵NM垂直平分AB,
∴∠BNM=90°,
∴∠NMB=∠BNM-∠B=90°-70°=20°;        
(3)在△ABC中,AB=AC,∠A=α,
∴∠B=∠C=
180°-∠A
2
=
180°-α
2

∵NM垂直平分AB,
∴∠BNM=90°,
∴∠NMB=∠BNM-∠B=90°-
180°-α
2
=
α
2
点评:本题考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离线段.也考查了等腰三角形的性质以及三角形内角和定理.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:如图1,在△ABC中,AB=AC,点D是边BC的中点.以BD为直径作圆O,交边AB于点P,连接PC,交AD于点E.
(1)求证:AD是圆O的切线;
(2)当∠BAC=90°时,求证:
PE
CE
=
1
2

(3)如图2,当PC是圆O的切线,E为AD中点,BC=8,求AD的长.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:
(1)写出一个你所学过的特殊四边形中是等邻角四边形的图形的名称;
(2)如图1,在△ABC中,AB=AC,点D在BC上,且CD=CA,点E、F分别为BC、AD的中点,连接EF并延长交AB于点G.求证:四边形AGEC是等邻角四边形;
(3)如图2,若点D在△ABC的内部,(2)中的其他条件不变,EF与CD交于点H,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说精英家教网明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1)已知:如图1,在四边形ABCD中,BC⊥CD,∠ACD=∠ADC.求证:AB+AC>
BC2+CD2

(2)已知:如图2,在△ABC中,AB上的高为CD,试判断(AC+BC)2与AB2+4CD2之间的大小关系,并证明你的结论.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,AD和AE分别是△ABC的BC边上的高和中线,点D是垂足,点E是BC的中点,规定:λA=
DE
BD
.如图2,在△ABC中,∠C=90°,∠A=30°,λC=
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在△ABC中,∠BAC的平分线AD与∠BCA的平分线CE交于点O.
(1)求证:∠AOC=90°+
12
∠ABC;
(2)当∠ABC=90°时,且AO=3OD(如图2),判断线段AE,CD,AC之间的数量关系,并加以证明.

查看答案和解析>>

同步练习册答案