精英家教网 > 初中数学 > 题目详情
已知AB=AC,DB=DE,∠BAC=∠BDE=α.
【小题1】如图1,α=60°,探究线段CE与AD的数量关系,并加以证明;
【小题2】如图2,α=120°,探究线段CE与AD的数量关系,并说明理由;
【小题3】如图3,结合上面的活动经验探究线段CE与AD的数量关系为__________    .(直接写出答案).

【小题1】见解析。
【小题2】见解析。
【小题3】CE=2sinAD解析:
解:.(1)连接BC,BE  ························ 1分
由△ABD△CBE,可证得CE="AD························" 3分
(2)CE=AD  ······························ 4分
连接BC、BE,过点A作AF⊥BC,垂足为点F
可证△ABD~△CBE

在RT△ABF中,∠ABC=60°

.······························· 6分
(3)CE=2sinAD
练习册系列答案
相关习题

科目:初中数学 来源:学习周报 数学 沪科八年级版 2009-2010学年 第13期 总169期 沪科版 题型:044

已知AB=AC,DB=DC,F是直线AD上一动点(即点F在直线AD上运动).当点F在直线AD上不停地运动时,你发现了什么规律?请写出,并进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知AB=AC,DB=DE,∠BAC=∠BDE=α.

1.如图1,α=60°,探究线段CE与AD的数量关系,并加以证明;

2.如图2,α=120°,探究线段CE与AD的数量关系,并说明理由;

3.如图3,结合上面的活动经验探究线段CE与AD的数量关系为__________    .(直接写出答案).

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省南京市建邺区中考一模数学试卷(带解析) 题型:解答题

已知AB=AC,DB=DE,∠BAC=∠BDE=α.
【小题1】如图1,α=60°,探究线段CE与AD的数量关系,并加以证明;
【小题2】如图2,α=120°,探究线段CE与AD的数量关系,并说明理由;
【小题3】如图3,结合上面的活动经验探究线段CE与AD的数量关系为__________    .(直接写出答案).

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省南京市建邺区中考一模数学试卷(解析版) 题型:解答题

已知AB=AC,DB=DE,∠BAC=∠BDE=α.

1.如图1,α=60°,探究线段CE与AD的数量关系,并加以证明;

2.如图2,α=120°,探究线段CE与AD的数量关系,并说明理由;

3.如图3,结合上面的活动经验探究线段CE与AD的数量关系为__________     .(直接写出答案)

 

查看答案和解析>>

同步练习册答案