精英家教网 > 初中数学 > 题目详情
如图,⊙O的圆心在定角∠α(0°<α<180°)的角平分线上运动,且⊙O与∠α的两边相切,图中阴影部分的面积S关于⊙O的半径r(r>0)变化的函数图象大致是【   】
A.B.C.D.
C。
如图,连接OB、OC、OA,

∵⊙O切AM于B,切AN于C,
∴∠OBA=∠OCA=90°,OB=OC=r,AB=AC。
∴∠BOC=360°﹣90°﹣90°﹣α=(180﹣α)°。
∵AO平分∠MAN,
∴∠BAO=∠CAO=α,
∴阴影部分的面积
∴S与r之间是二次函数关系。
∵r>0,∴二次函数图象在第一象限。
故选C。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线与直线交于点O(0,0),。点B是抛物线上O,A之间的一个动点,过点B分别作x轴、y轴的平行线与直线OA交于点C,E。

(1)求抛物线的函数解析式;
(2)若点C为OA的中点,求BC的长;
(3)以BC,BE为边构造条形BCDE,设点D的坐标为(m,n),求m,n之间的关系式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系xOy中,直线y=kx(k为常数)与抛物线交于A,B两点,且A点在y轴左侧,P点的坐标为(0,﹣4),连接PA,PB.有以下说法:
①PO2=PA•PB;
②当k>0时,(PA+AO)(PB﹣BO)的值随k的增大而增大;
③当时,BP2=BO•BA;
④△PAB面积的最小值为
其中正确的是     (写出所有正确说法的序号)

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数y=x2+1的图象的顶点坐标是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线的图象与x轴的一个交点为B(5,0),另一个交点为A,且与y轴交于点C(0,5)。

(1)求直线BC与抛物线的解析式;
(2)若点M是抛物线在x轴下方图象上的动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;
(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平面直角坐标系中,已知M1(3,2),N1(5,﹣1),线段M1N1平移至线段MN处(注:M1与M,N1与N分别为对应点).

(1)若M(﹣2,5),请直接写出N点坐标.
(2)在(1)问的条件下,点N在抛物线上,求该抛物线对应的函数解析式.
(3)在(2)问条件下,若抛物线顶点为B,与y轴交于点A,点E为线段AB中点,点C(0,m)是y轴负半轴上一动点,线段EC与线段BO相交于F,且OC:OF=2:,求m的值.
(4)在(3)问条件下,动点P从B点出发,沿x轴正方向匀速运动,点P运动到什么位置时(即BP长为多少),将△ABP沿边PE折叠,△APE与△PBE重叠部分的面积恰好为此时的△ABP面积的,求此时BP的长度.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的最小值是         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在平面直角坐标系中,抛物线轴的交点的个数是___________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数(a≠0)的图象如图所示,则下列结论中正确的是
A.a>0 B.当﹣1<x<3时,y>0
C.c<0 D.当x≥1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案