分析 (1)证明△ACB≌△CDE,得到AC=CD,根据直角三角形的性质求出AC,求出CD;
(2)根据等腰三角形的判定定理证明.
解答 解:(1)在△ACB和△CDE中,∠B=∠DEC=90°,BC=DE,
∠ACB=∠CDE,
在△ACB和△CDE中,
$\left\{\begin{array}{l}{∠B=∠DEC}\\{BC=DE}\\{∠ACB=∠CDE}\end{array}\right.$,
∴△ACB≌△CDE,
∴AC=CD,
在Rt△ABC中,∠B=90°,∠ACB=30°,AB=4,
∴AC=2AB=8,
∴CD=8;
(2)△FCD是等腰三角形,
理由:∵DE∥AB,∠B=90°,
∴∠DEC=90°,
∴∠DCE=90°-∠CDE=60°,
∴∠DCF=∠DCE-∠ACB=30°,
∴∠CDE=∠DCF,
∴DF=CF,
∴△FCD是等腰三角形.
点评 本题考查的是全等三角形的判定和性质、等腰三角形的判定,掌握全等三角形的判定定理和性质定理是解题的关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com