精英家教网 > 初中数学 > 题目详情
等腰梯形ABCD中,AD∥BC,AB=DC=12,AD=4,∠B=60°,点P是腰AB上的一个动点.(1)求BC的长;
(2)如图1,如果点M在BC上,BM=12,PM平分梯形ABCD的面积,求出此时PB的长;(3)过点P作直线PM,是否存在PM将梯形ABCD的周长和面积同时平分?若存在,求出此时PB的长;若不存在,请说明理由。
解:(1)过点A作AE⊥BC,DF⊥BC,
∵∠B=60°,AB=12,
∴sin60°=
∴AE=6
∴BE=6,同理可证:FC=6,
∴BC=BE+EF+FC=6+4+6=16;  
(2)作△PBM的高PG,
∵等腰梯形ABCD的面积是:
(AD+BC)AE=×(4+16)×6=60
∵PM平分梯形ABCD的面积,
∴S△PBM=30
∵BM=12,
∴PG=5
∵∠B=60°,
∴PB=
∴PB=10;  
(3)当M在BC上时,梯形ABCD的周长是4+12+16+12=44,
∵PB=10,BM=12时PB+BM=22(符合题意),
PB=12,BM=10时 PB+BM=22(符合题意),
当M在DC上时(舍去),
当M在AD上(舍去),
则存在符合题意的直线PM.  

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在等腰梯形ABCD中,AD∥BC,AD=4,BC=2,tanA=2,则梯形ABCD的面积是
 
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在等腰梯形ABCD中,AB∥CD,∠ABC=60°,AC平分∠DAB,E、F分别为对角线AC、DB的中点,且EF=4.求这个梯形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网(1)如图,在等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AD=5,求EC的长.
(2)如图是一个外轮廓为矩形的机器零件平面示意图,根据图中的尺寸(单位:mm),计算两圆孔中心A和B的距离.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网在等腰梯形ABCD中,AD∥BC,BD平分∠ABC,∠C=60°,
(1)求AD:BC;
(2)若AD=2cm,求梯形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

等腰梯形ABCD中,AD=2,BC=4,高DF=2,则腰CD长是
5
5

查看答案和解析>>

同步练习册答案