A. | 10cm | B. | 15cm | C. | 20cm | D. | 30cm |
分析 根据平行四边形的性质,两组对边分别平行且相等,对角线相互平分,OE⊥BD可说明EO是线段BD的中垂线,中垂线上任意一点到线段两端点的距离相等,则BE=DE,再利用平行四边形ABCD的周长为30可得AB+AD=15,进而可得△ABE的周长.
解答 解:∵四边形ABCD是平行四边形,
∴AB=CD,AD=BC,点O平分BD、AC,即OB=OD,
又∵OE⊥BD,
∴OE是线段BD的中垂线,
∴BE=DE,
∴AE+ED=AE+BE,
∵?ABCD的周长为30,
∴AB+AD=15,
∴△ABE的周长=AB+AD=AB+AE+BE=15,
故选:B.
点评 此题主要考查了平行四边形的性质,中垂线的判定及性质,关键是掌握平行四边形平行四边形的对边相等.平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 互余 | B. | 互补 | C. | 相等 | D. | 不等 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com