精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD各个顶点的坐标分别为A(6,4),B(3,7),C(0,4),D(3,1).
(1)求四边形ABCD的面积;
(2)如果四边形ABCD绕点C旋转180°,试确定旋转后四边形各个顶点的坐标;
(3)请你重新设计适当的坐标系,使得四个顶点的纵坐标不变,横坐标乘以-1后,所的图形与原图形重合.

解:(1)由图可知四边形ABCD的对角线互相垂直,并且长都是6,
所以面积=×6×6=18平方单位;

(2)A′(-6,4),B′(-3,1),C(0,4),D′(-3,7);

(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.
分析:(1)根据对角线互相垂直的四边形ABCD的面积等于对角线乘积的一半列式进行计算即可得解;
(2)根据中心对称的性质,求出点A、B、C、D关于点C的对称点的坐标即为旋转后的对应点的坐标;
(3)以原坐标轴的(3,0)点为原点,以原坐标轴x轴为横轴,以四边形垂直x轴对角线为y轴建立坐标系.
点评:本题考查了坐标与图形的变化-旋转,三角形的面积,坐标与图形的性质,主要利用了关于点对称的点的坐标的求解,对角线互相垂直的四边形的面积等于对角线乘积的一半.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案