【题目】任意选择电视的某一频道,正在播放动画片,这个事件是 事件.(填“必然”“不可能”或“不确定”)
科目:初中数学 来源: 题型:
【题目】在锐角△ABC中,AB=AC,AD为BC边上的高,E为AC中点.
(1)如图1,过点C作CF⊥AB于F点,连接EF.若∠BAD=20°,求∠AFE的度数;
(2)若M为线段BD上的动点(点M与点D不重合),过点C作CN⊥AM于N点,射线EN,AB交于P点.
①依题意将图2补全;
②小宇通过观察、实验,提出猜想:在点M运动的过程中,始终有∠APE=2∠MAD.
小宇把这个猜想与同学们进行讨论,形成了证明该猜想的几种想法:
想法1:连接DE,要证∠APE=2∠MAD,只需证∠PED=2∠MAD.
想法2:设∠MAD=α,∠DAC=β,只需用α,β表示出∠PEC,通过角度计算得∠APE=2α.
想法3:在NE上取点Q,使∠NAQ=2∠MAD,要证∠APE=2∠MAD,只需证△NAQ∽△APQ.……
请你参考上面的想法,帮助小宇证明∠APE =2∠MAD.(一种方法即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:已知点A、B是反比例函数y=﹣上在第二象限内的分支上的两个点,点C(0,3),且△ABC满足AC=BC,∠ACB=90°,则线段AB的长为__.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一种拉杆式旅行箱的示意图如图所示,箱体长AB=50cm,拉杆最大伸长距离BC=35cm,(点A、B、C在同一条直线上),在箱体的底端装有一圆形滚轮⊙A,⊙A与水平地面切于点D,AE∥DN,某一时刻,点B距离水平面38cm,点C距离水平面59cm.
(1)求圆形滚轮的半径AD的长;
(2)当人的手自然下垂拉旅行箱时,人感觉较为舒服,已知某人的手自然下垂在点C处且拉杆达到最大延伸距离时,点C距离水平地面73.5cm,求此时拉杆箱与水平面AE所成角∠CAE的大小(精确到1°,参考数据:sin50°≈0.77,cos50°≈0.64,tan50°≈1.19).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,某电视台的娱乐节目《周末打放送》有这样的翻奖牌游戏,数字的背面写有祝福语或奖金数,游戏规则是:每翻动正面一个数字,看看反面对应的内容,就可知是得奖还是得到温馨祝福.
1 | 2 | 3 |
4 | 5 | 6 |
7 | 8 | 9 |
正面
祝你开心 | 万事如意 | 奖金800元 |
身体健康 | 心想事成 | 奖金500元 |
奖金200元 | 生活愉快 | 谢谢参与 |
反面
计算:
(1)“翻到奖金800元”的概率;
(2)“翻到奖金”的概率;
(3)“翻不到奖金”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读解题过程,回答问题.
如图,OC在∠AOB内,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度数.
解:过O点作射线OM,使点M,O,A在同一直线上.
因为∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列说法正确的有( ) ①无理数是无限小数;②无限小数是无理数;③开方开不尽的数是无理数;④两个无理数的和一定是无理数;⑤无理数的平方一定是有理数.
A.1个
B.2个
C.3个
D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规定※是一种新的运算符号,且a※b=ab+a+b,例如:2※3=2×3+2+3=11,那么(3※4)※1=( )
A.19
B.29
C.39
D.49
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com