精英家教网 > 初中数学 > 题目详情
19.计算:(-1)2016-(3-π)0+2-1

分析 原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.

解答 解:原式=1-1+$\frac{1}{2}$=$\frac{1}{2}$.

点评 此题考查了实数的运算,熟练掌握运算法则是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)$\sqrt{8}$+|1-$\sqrt{2}$|-($\sqrt{5}$)2
(2)$\frac{\sqrt{3}}{2}$×($\sqrt{6}$$+\sqrt{3}$)$-\sqrt{\frac{9}{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.下列化简结果正确的是(  )
A.$\sqrt{2}$+$\sqrt{3}$=$\sqrt{5}$B.a$\sqrt{-\frac{1}{a}}$=-$\sqrt{a}$C.($\sqrt{3}$)3=9$\sqrt{3}$D.2$\sqrt{12}$+$\sqrt{18}$=7$\sqrt{3}$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.计算$\sqrt{8}×\sqrt{2}$的结果是(  )
A.$\sqrt{10}$B.4C.8D.±4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

14.下列计算正确的是(  )
A.2a+3a=5a2B.a2•a3=a6C.a6÷a2=a3D.(a23=a6

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.直线与四边形的关系我们给出如下定义:如图1,当一条直线与一个四边形没有公共点时,我们称这条直线和这个四边形相离.如图2,当一条直线与一个四边形有唯一公共点时,我们称这条直线和这个四边形相切.如图3,当一条直线与一个四边形有两个公共点时,我们称这条直线和这个四边形相交.
(1)如图4,矩形AOBC在平面直角坐标系xOy中,点A在x轴上,点B在y轴上,OA=3,OB=2,直线y=x+2与矩形AOBC的关系为相切.
(2)在(1)的条件下,直线y=x+2经过平移得到直线y=x+b,
当直线y=x+b,与矩形AOBC相离时,b的取值范围是b<-3或b>2  ;
当直线y=x+b,与矩形AOBC相交时,b的取值范围是-3<b<2 .
(3)已知P(m,m+2),Q(3,m+2),M(3,1),N(m,1),当直线y=x+2与四边形PQMN相切且线段QN最小时,利用图5求直线QN的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图1,△ABC中,D,E,F三点分别在AB,AC,BC三边上,过点D的直线与线段EF的交点为点H,∠1+∠2=180°,∠3=∠C.
(1)求证:DE∥BC;
(2)在以上条件下,若△ABC及D,E两点的位置不变,点F在边BC上运动使得∠DEF的大小发生变化,保证点H存在且不与点F重合,记∠C=α,探究:要使∠1=∠BFH成立,∠DEF应满足何条件(可以是便于画出准确位置的条件).直接写出你探究得到的结果,并根据它画出符合题意的图形.
(1)证明:
(2)要使∠1=∠BFH成立,∠DEF应满足∠DEF=90°-$\frac{α}{2}$(或点F运动到∠DEC的角平分线与边BC的交点位置).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知关于x的方程$k{x^2}-\sqrt{2k+4}x+1=0$有两个不相等的实数根,则k的范围是-2≤k<2且k≠0.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,在平行四边形ABCD中,AB=6,AD=8,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE于G,BG=4$\sqrt{2}$,则四边形AECD的周长为(  )
A.20B.21C.22D.23

查看答案和解析>>

同步练习册答案