精英家教网 > 初中数学 > 题目详情
已知,如图1,矩形ABCD中,AD=6,DC=8,矩形EFGH的三个顶点E、G、H分别在矩形ABCD的边ABCD的边AB、CD、DA上,AH=2,连接CF.

(1)如图2,当四边形EFGH为正方形时,求CF的长和△FCG的面积;
(2)如图1,设AE=x,△FCG的面积=y,求y与x之间的函数关系式与y的最大值.
(3)当△CG是直角三角形时,求x和y值.
(1),6;(2)y=8?,7;(3)x="2,6," 4+2 或4-2,y=4, 或4-2

试题分析:(1)要求CF的长和△FCG的面积,需先证△AEH≌△DHG≌△MGF
(2)先证△AEH∽△DHG,然后根据比例关系,求出y与x之间的函数关系式与y的最大值;
(3)由画图可知∠FGC和∠GCF都不能为直角,当∠GFC=90°时,E、F、C三点在一条直线上,所以△AEH∽△BCE,根据相似三角形的对应线段成比例可求出解.
试题解析:(1)作FM⊥CD于M,

可证△AEH≌△DHG≌△MGF,
∴MG=DH=6-2=4,CG=6,CM=2,DG=FM=2,
∴CF=
∴△FCG的面积=×6×2=6;
(2)可证△AEH∽△DHG,
,即
∴DG=
∴y=△FCG的面积=×(8?)×2=8?
∵8?>0,x≤8,
∴1<x≤8,
∴当x=8时,y的最大值为7.
(3)当∠GFC=90°时,E、F、C三点在一条直线上,
∴△AEH∽△BCE
,即
解得:x=2或x=6.
∴y=4或y=
当∠GCF=90°时,此时F点正好落在边BC上,
则△HAE∽△GDH,

解得:x=4+2 或4-2
对应的y=4+2 或4-2
当∠CGF=90°时,C,G,H共线,所以不可能;
考点: 1.矩形的性质;2.相似三角形的判定与性质.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知=k,则k的值是           

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在Rt△ABC中,AB=AC=4.一动点P从点B出发,沿BC方向以每秒1个单位长度的速度匀速运动,到达点C即停止.在整个运动过程中,过点P作PD⊥BC与Rt△ABC的直角边相交于点D,延长PD至点Q,使得PD=QD,以PQ为斜边在PQ左侧作等腰直角三角形PQE.设运动时间为t秒(t>0).

(1)在整个运动过程中,设△ABC与△PQE重叠部分的面积为S,请直接写出S与t之间的函数关系式以及相应的自变量t的取值范围;
(2)当点D在线段AB上时,连接AQ、AP,是否存在这样的t,使得△APQ成为等腰三角形?若存在,求出对应的t的值;若不存在,请说明理由;
(3)当t=4秒时,以PQ为斜边在PQ右侧作等腰直角三角形PQF,将四边形PEQF绕点P旋转,PE与线段AB相交于点M,PF与线段AC相交于点N.试判断在这一旋转过程中,四边形PMAN的面积是否发生变化?若发生变化,求出四边形PMAN的面积y与PM的长x之间的函数关系式以及相应的自变量x的取值范围;若不发生变化,求出此定值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,如图,在平行四边形ABCD中,E、F分别是边BC、CD上的点,且EF∥BD,AE、AF分别交BD于点G和点H,BD=12,EF=8。求:(1)的值。(2)线段GH的长。

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知,请添加一个条件,使,这个条件可以是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

把一个三角形分割成几个小正三角形,有两种简单的“基本分割法”.
基本分割法1:如图①,把一个正三角形分割成4个小正三角形,即在原来1个正三角形的基础上增加了3个正三角形.
基本分割法2:如图②,把一个正三角形分割成6个小正三角形,即在原来1个正三角形的基础上增加了5个正三角形.

请你运用上述两种“基本分割法”,解决下列问题:
(1)把图③的正三角形分割成9个小正三角形;
(2)把图④的正三角形分割成10个小正三角形;
(3)把图⑤的正三角形分割成11个小正三角形;
(4)把图⑥的正三角形分割成12个小正三角形.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

直线l1∥l2∥l3,且l1与l2的距离为1,l2与l3的距离为3,把一块含有45°角的直角三角形如图放置,顶点A,B,C恰好分别落在三条直线上,AC与直线l2交于点D,则线段BD的长度为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在比例尺是1:38000的黄浦江交通游览图上,某隧道长约7,它的实际长度约为(    )
A.0.266B.2.66C.26.6D.266.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

,则=__________.

查看答案和解析>>

同步练习册答案