精英家教网 > 初中数学 > 题目详情

数学课堂上,徐老师出示一道试题:
如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连结EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn   °时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
    

1)∵∠1=∠2. AE="MC" , ∠MCN=∠5.
2)成立  在上截取
3)∠AMN=60°= (3-2)/3 ×180°
∠A1M1N1=90°=(4-2)/4 ×180°
∠AnMnNn= (n-2)/n ×180°

解析

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:
如图1所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连接EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=
12
∠ACP=60°.∴∠MCN=∠3+∠4=120°…①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.…②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
 

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图2),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3)若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn=
 
°时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:

    如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.

(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.

    证明:在AB上截取EA=MC,连结EM,得△AEM.

    ∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

    又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.

∴△BEM为等边三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

                                            

∴△AEM≌△MCN (ASA).∴AM=MN.

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)

(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn    °时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)

    

 

 

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AMMN

    

(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.

证明:在AB上截取EAMC,连结EM,得△AEM

∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM为等边三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1M1N1.是否还成立?(直接写出答案,不需要证明)

(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDnXn”,请你猜想:当∠AnMnNn    °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

 

查看答案和解析>>

科目:初中数学 来源: 题型:

数学课堂上,徐老师出示一道试题:
如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连结EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
                                            
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn   °时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
    

查看答案和解析>>

科目:初中数学 来源:2011年初中毕业升学考试(山东泰安卷)数学解析版 题型:解答题

数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,MBC边(不含端点BC)上任意一点,PBC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AMMN

    

(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.

证明:在AB上截取EAMC,连结EM,得△AEM

∵∠1=180°-∠AMB-∠AMN2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.

CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①

又∵BABCEAMC,∴BAEABCMC,即BEBM

∴△BEM为等边三角形.∴∠6=60°.

∴∠5=180°-∠6=120°.………②

∴由①②得∠MCN=∠5.

在△AEM和△MCN中,

∵________________________________

∴△AEM≌△MCN (ASA).∴AMMN

(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1M1N1.是否还成立?(直接写出答案,不需要证明)

(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDnXn”,请你猜想:当∠AnMnNn    °时,结论AnMnMnNn仍然成立?(直接写出答案,不需要证明)

 

查看答案和解析>>

同步练习册答案