精英家教网 > 初中数学 > 题目详情
在直角坐标平面中,如果线段AB的两个端点坐标分别为(4,-1)和(1,3),那么线段AB的长为
 
分析:直接根据直角坐标系中两点的距离公式计算即可.
解答:解:∵线段AB的两个端点坐标分别为(4,-1)和(1,3),
∴AB=
(4-1)2+(-1-3)2
=5.
故答案为5.
点评:本题考查了直角坐标系中两点的距离公式:如果A、B两点的坐标分别为(x1,y1),(x2,y2),那么AB=
(x1-x2)2+(y1-y2)2
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的负半轴相交于精英家教网点C(如图),点C的坐标为(0,-3),且BO=CO
(1)求这个二次函数的解析式;
(2)设这个二次函数的图象的顶点为M,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角坐标平面中,Rt△ABC的斜边AB在x轴上,直角顶点C在y轴的负半轴上,cos∠ABC=
45
,点P在线段OC上,且PO、OC的长是方程x2-15x+36=0的两根.
(1)求P点坐标;
(2)求AP的长;
(3)在x轴上是否存在点Q,使以A、Q、C、P为顶点的四边形是梯形?若存在,请求出直线PQ的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标平面中,O为坐标原点,二次函数y=x2+bx+c的图象与x轴的正半轴相交于点精英家教网B,与y轴相交于点C(0,-3),且BO=CO.
(1)求这个二次函数的解析式;
(2)设这个二次函数图象的顶点为M,试判断并证明△BCM是否直角三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长宁区二模)如图,在直角坐标平面中,等腰△ABC的顶点A在第一象限,B(2,0),C(4,0),△ABC的面积是3.
(1)若x轴表示水平方向,设从原点O观测点A的仰角为α,求tanα的值;
(2)求过O、A、C三点的抛物线解析式,并写出抛物线的对称轴和顶点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•长宁区二模)如图,在直角坐标平面中,O为原点,A(0,6),B(8,0).点P从点A出发,以每秒2个单位长度的速度沿射线AO方向运动,点Q从点B出发,以每秒1个单位长度的速度沿x轴正方向运动.
P、Q两动点同时出发,设移动时间为t(t>0)秒.
(1)在点P、Q的运动过程中,若△POQ与△AOB相似,求t的值;
(2)如图(2),当直线PQ与线段AB交于点M,且
BM
MA
=
1
5
时,求直线PQ的解析式;
(3)以点O为圆心,OP长为半径画⊙O,以点B为圆心,BQ长为半径画⊙B,讨论⊙O和⊙B的位置关系,并直接写出相应t的取值范围.

查看答案和解析>>

同步练习册答案