精英家教网 > 初中数学 > 题目详情
(2013•淄博)如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P,若BC=10,则PQ的长为(  )
分析:首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.
解答:解:∵BQ平分∠ABC,BQ⊥AE,
∴△BAE是等腰三角形,
同理△CAD是等腰三角形,
∴点Q是AE中点,点P是AD中点(三线合一),
∴PQ是△ADE的中位线,
∵BE+CD=AB+AC=26-BC=26-10=16,
∴DE=BE+CD-BC=6,
∴PQ=
1
2
DE=3.
故选C.
点评:本题考查了三角形的中位线定理,解答本题的关键是判断出△BAE、△CAD是等腰三角形,利用等腰三角形的性质确定PQ是△ADE的中位线.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•淄博)如图,直角梯形ABCD中,AB∥CD,∠C=90°,∠BDA=90°,AB=a,BD=b,CD=c,BC=d,AD=e,则下列等式成立的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淄博)如图,AB是⊙O的直径,
AD
=
DE
,AB=5,BD=4,则sin∠ECB=
4
5
4
5

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淄博)如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•淄博)如图,Rt△OAB的顶点A(-2,4)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为(  )

查看答案和解析>>

同步练习册答案