科目:初中数学 来源:2013年河南省平顶山市中考第二次调研测试(二模)数学试卷(带解析) 题型:解答题
如图,抛物线与y轴突于A点,过点A的直线y=kx+l与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点产作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并求出线段MN的最大值;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源:2013年河南省平顶山市中考第二次调研测试(二模)数学试卷(解析版) 题型:解答题
如图,抛物线与y轴突于A点,过点A的直线y=kx+l与抛物线交于另一点B,过点B作BC⊥x轴,垂足为点C(3,0)
(1)求直线AB的函数关系式;
(2)动点P在线段OC上从原点出发以每秒一个单位的速度向C移动,过点产作PN⊥x轴,交直线AB于点M,交抛物线于点N,设点P移动的时间为t秒,MN的长度为s个单位,求s与t的函数关系式,并求出线段MN的最大值;
(3)设在(2)的条件下(不考虑点P与点O,点C重合的情况),连接CM,BN,当t为何值时,四边形BCMN为平行四边形?问对于所求的t值,平行四边形BCMN是否菱形?请说明理由.
查看答案和解析>>
科目:初中数学 来源:2012届山东省济南市初三模拟考试数学卷 题型:选择题
(本题满分10分)如图所示,过点F(0,1)的直线y=kx+b与抛物线y= x2交于M(x1,y1)和N(x2,y2)两点(其中x1<0,x2<0).
(1)求b的值.
(2)求x1•x2的值
(3)分别过M、N作直线l:y=-1的垂线,垂足分别是M1、N1,判断△M1FN1的形状,并证明你的结论.
(4) 对于过点F的任意直线MN,是否存在一条定直线m,使m与以MN为直径的圆相切.如果有,请求出这条直线m的解析式;如果没有,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com