精英家教网 > 初中数学 > 题目详情
(2013•历城区二模)已知a2+a-1=0,则2a3+4a2+2013的值是
2015
2015
分析:先将已知条件变形为a2=1-a、a2+a=1,然后逐步代入代数式2a3+4a2+2013中,再进行计算即可得出答案.
解答:解:∵a2+a-1=0,
∴a2=1-a、a2+a=1,
∴2a3+4a2+2013
=2a•a2+4(1-a)+2013
=2a(1-a)+4-4a+2013
=2a-2a2-4a+2017
=-2a2-2a+2017
=-2(a2+a)+2017
=-2+2017
=2015.
故答案为:2015.
点评:此题考查了因式分解的应用,解题的关键是多次进行整数的变形,把复杂的问题转化成简单问题,渗透了整体思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•历城区二模)点E为正方形ABCD的BC边的中点,动点F在对角线AC上运动,连接BF、EF.设AF=x,△BEF的周长为y,那么能表示y与x的函数关系的图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)如图,在一单位为1的方格纸上,△AA1A2,△A2A3A4,△A4A5A6,△A6A7A8,…,都是一边在x轴上、边长分别为1,2,3,4,…的等边三角形.若△AA1A2的顶点坐标分别为A(0,0),A1
1
2
3
2
),A2(1,0),则依如图所示规律,A2013的坐标为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)如图,M为双曲线y=
2x
上的一点,过点M作x轴、y轴的垂线,分别交直线y=-x+m于D、C两点,若直线y=-x+m与y轴交于点A,与x轴交于点B,则AD•BC的值为
4
4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•历城区二模)直线y=x+b与x轴交于点C(4,0),与y轴交于点B,并与双曲线y=
mx
(x<0)交于点A(-1,n).
(1)求直线与双曲线的解析式.
(2)连接OA,求∠OAB的正弦值.
(3)若点D在x轴的正半轴上,是否存在以点D、C、B构成的三角形与△OAB相似?若存在求出D点的坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案