【题目】小明遇到下面的问题:求代数式的最小值并写出取到最小值时的x值.经过观察式子结构特征,小明联想到可以用解一元二次方程中的配方法来解决问题,具体分析过程如下:
,所以,当x=1 时,代数式有最小值是-4.
(1)请你用上面小明思考问题的方法解决下面问题.
① 的最小值是_______;②求的最小值.
(2)小明受到上面问题的启发,自己设计了一个问题,并给出解题过程及结论如下:
问题:当x为实数时,求的最小值.
解:,∴原式有最小值是5.
请你判断小明的结论是否正确,并简要说明理由.
判断:__________,理由:____________________________________________________.
【答案】(1)①-9②4(2)小明的结论错误
【解析】分析:1)①根据题意可以将式子化为题目中例子中的形式,从而可以解答本题;②根据题意可以将式子化为题目中例子中的形式,从而可以解答本题;
(2)根据题目中的式子可以得到小明的做法是否正确.
详解:(1)①x2-6x=x2-6x+9-9=(x-3)2-9,
∴当x=1时,代数式x2-6x有最小值是-9;
②x2-4x+y2+2y+9=x2-4x+4+y2+2y+1+4=(x-2)2+(y+1)2+4,
∴当x=2,y=-1时,代数式x2-4x+y2+2y+5有最小值是4,
(2)小明的结论错误,
理由:∵x2+1=0时,x无解,
∴(x2+1)2+5最小值不是5,
∵x2≥0,∴当x2=0时,(x2+1)2+5最小值是6.
科目:初中数学 来源: 题型:
【题目】平面上,矩形ABCD与直径为QP的半圆K如图1摆放,分别延长DA和QP交于点O,且∠DOQ=60°,OQ=0D=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为α(0°≤α≤60°).
发现:
(1)当α=0°,即初始位置时,点P直线AB上.(填“在”或“不在”)求当α是多少时,OQ经过点B.
(2)在OQ旋转过程中,简要说明α是多少时,点P,A间的距离最小?并指出这个最小值;
(3)如图2,当点P恰好落在BC边上时,求a及S阴影
拓展:
如图3,当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围.
探究:当半圆K与矩形ABCD的边相切时,求sinα的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E,若AC=6,BC=8,CD=3.
(1)求DE的长;
(2)求△ADB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.
(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明去文具用品商店给同学买某品牌水性笔,已知甲、乙两商店都有该品牌的水性笔且标价都是2元/支,但甲、乙两商店的优惠条件却不同.
甲商店:若购买不超过10支,则按标价付款;若一次购10支以上,则超过10支的部分按标价的60%付款. 乙商店:按标价的80%付款.
在水性笔的质量等因素相同的条件下.
(1)设小明要购买的该品牌笔数是x(x>10)支,请用含x的式子分别表示在甲、乙两个商店购买该品牌笔买水性笔的费用.
(2)若小明要购买该品牌笔30支,你认为在甲、乙两商店中,到哪个商店购买比较省钱?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.
根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是多少米?
(2)在整个上学的途中哪个时间段小明骑车速度最快,最快的速度是多少米/分?
(3)小明在书店停留了多少分钟?
(4)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两个水桶中装有少量且重量相等的水,先把甲桶的水倒出三分之一给乙桶,再把乙桶的水倒出四分之一给甲桶(假设不会溢出),最后甲、乙两桶中水的重量的大小是( )
A. 甲桶中水的重量>乙桶中水的重量 B. 甲桶中水的重量=乙桶中水的重量
C. 甲桶中水的重量<乙桶中水的重量 D. 不能确定,与桶中原有水的重量有关
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图抛物线y=ax2+bx+c与x轴交于A、B两点,其中B点坐标为(4,0),直线DE是抛物线的对称轴,且与x轴交于点E,CD⊥DE于D,现有下列结论: ①a<0,②b<0,③b2﹣4ac>0,④AE+CD=4
下列选项中选出的结论完全正确的是( )
A.①②③
B.①②④
C.①③④
D.①②
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)-23-6×(-3) (2)(+4.3)-|-4|+(-2.3)-(+4)×0
(3)×2+(-2)3÷|-4| (4)+()×(-18)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com