精英家教网 > 初中数学 > 题目详情

【题目】桐城市发起了保护龙眠河行动,某学校七年级两个班的115名学生积极参与,踊跃捐款,已知甲班有 的学生每人捐了10元,乙班有的学生每人捐了10元,两个班其余学生每人捐了5元,设甲班有学生x人。

1)用含x的代数式表示乙班人数:

2)用含x的代数式表示两班捐款的总额;

3)若x=60,则两班共捐款多少元?

【答案】1115-x;(2)(-x+805)元;(3785.

【解析】

1)根据题意可以用含x的代数式表示出乙班的人数;

2)根据题意可以用含x的代数式表示两班捐款的总额;

3)将x=60代入(2)中的代数式即可解答本题.

1)由题意可得,

乙班人数为:115-x

故答案为:115-x

2x×10+ (115-x)×10+(1-)x×5+(1-)(115-x)×5

=x+460-4x+x+345-3x

=-x+805

即两班捐款的总额是(-x+805)元;

3)当x=60时,

-x+805=-×60+805=-20+805=785(元),

答:x=60时,两班共捐款785.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,以下各图都是由同样大小的图形①按一定规律组成,其中第①个图形中共有1个完整菱形,第②个图形中共有5个完整菱形,第③个图形中共有13个完整菱形,…,则第⑦个图形中完整菱形的个数为(  )

A. 83B. 84C. 85D. 86

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,AB=8,AD=12,MAD边的中点,PAB边上的一个动点(不与A、B重合),PM的延长线交射线CDQ点,MNPQ交射线BCN点。

(1)若点NBC之间时,如图:

①求证:∠NPQ=PQN;

②请问是否为定值?若是定值,求出该定值;若不是,请举反例说明;

(2)当PBNNCQ的面积相等时,求AP的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:

1)(5mn2﹣4m2n)(﹣2mn

2)(x+7)(x﹣6x﹣2)(x+1

3 ()2 016×161 008

【答案】1﹣10m2n3+8m3n2;(22x﹣40(3)1

【解析】试题分析:1)原式利用单项式乘以多项式法则计算即可得到结果;

2)原式两项利用多项式乘以多项式法则计算,去括号合并即可得到结果

3)先根据幂的乘方的逆运算,把()2 016化为()1008,再根据积的乘方的逆运算计算即可.

试题解析:(1原式=5mn2)(﹣2mn+﹣4m2n)(﹣2mn=﹣10m2n3+8m3n2

2原式=x2﹣6x+7x﹣42﹣x2﹣x+2x+2=2x﹣40

3)原式=()1008×161 008=(×16)1 008=1.

型】解答
束】
19

【题目】如图,方格图中每个小正方形的边长为1,点ABC都是格点.

1)画出△ABC关于直线BM对称的△A1B1C1

2)写出AA1的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线m:y=ax2+b(a<0,b>0)与x轴于点A、B(点A在点B的左侧),与y轴交于点C.将抛物线m绕点B旋转180°,得到新的抛物线n,它的顶点为C1,与x轴的另一个交点为A1.若四边形AC1A1C为矩形,则a,b应满足的关系式为(  )

A. ab=﹣2 B. ab=﹣3 C. ab=﹣4 D. ab=﹣5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读思考:

数学课上老师出了一道分式化简求值题目.

题目: ÷(x1)·其中x=-.

勤奋小组的杨明同学展示了他的解法:

解:原式=.........................................................................第一步

..........................................................................第二步

...........................................................................................第三步

..................................................................................................第四步

x=-原式=.................................................................第五步

请你认真阅读上述解题过程并回答问题:

你认为该同学的解法正确吗?如有错误请指出错误在第几步并写出完整、正确的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.

(1如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;

(2如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;

(3若改变(2中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,BAC=90°,E、F分别是BC、AC的中点,延长BA到点D,使2AD=AB.连接DE,DF.
(1)求证:AF与DE互相平分;
(2)若BC=4,求DF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是矩形的边上一点,以为折痕翻折,使得点的对应点落在矩形内部点处,连接,若,当是以为底的等腰三角形时, ___________

查看答案和解析>>

同步练习册答案