精英家教网 > 初中数学 > 题目详情

【题目】如图,将矩形ABCD沿AF折叠,使点D落在BC边的点E处,过点E作EG∥CD交AF于点G,连接DG.

(1)求证:四边形EFDG是菱形;
(2)探究线段EG、GF、AF之间的数量关系,并说明理由;
(3)若AG=6,EG=2 ,求BE的长.

【答案】
(1)

证明:

∵GE∥DF,

∴∠EGF=∠DFG.

∵由翻折的性质可知:GD=GE,DF=EF,∠DGF=∠EGF,

∴∠DGF=∠DFG.

∴GD=DF.

∴DG=GE=DF=EF.

∴四边形EFDG为菱形


(2)

解:EG2= GFAF.

理由:如图1所示:连接DE,交AF于点O.

∵四边形EFDG为菱形,

∴GF⊥DE,OG=OF= GF.

∵∠DOF=∠ADF=90°,∠OFD=∠DFA,

∴△DOF∽△ADF.

,即DF2=FOAF.

∵FO= GF,DF=EG,

∴EG2= GFAF


(3)

解:如图2所示:过点G作GH⊥DC,垂足为H.

∵EG2= GFAF,AG=6,EG=2

∴20= FG(FG+6),整理得:FG2+6FG﹣40=0.

解得:FG=4,FG=﹣10(舍去).

∵DF=GE=2 ,AF=10,

∴AD= =4

∵GH⊥DC,AD⊥DC,

∴GH∥AD.

∴△FGH∽△FAD.

,即 =

∴GH=

∴BE=AD﹣GH=4 =


【解析】(1)先依据翻折的性质和平行线的性质证明∠DGF=∠DFG,从而得到GD=DF,接下来依据翻折的性质可证明DG=GE=DF=EF;(2)连接DE,交AF于点O.由菱形的性质可知GF⊥DE,OG=OF= GF,接下来,证明本题主要考查的是四边形与三角形的综合应用,解答本题主要应用了矩形的性质、菱形的判定和性质、相似三角形的性质和判定、勾股定理的应用,利用相似三角形的性质得到DF2=FOAF是解题答问题(2)的关键,依据相似三角形的性质求得GH的长是解答问题(3)的关键.△DOF∽△ADF,由相似三角形的性质可证明DF2=FOAF,于是可得到GE、AF、FG的数量关系;(3)过点G作GH⊥DC,垂足为H.利用(2)的结论可求得FG=4,然后再△ADF中依据勾股定理可求得AD的长,然后再证明△FG∽△FAD,利用相似三角形的性质可求得GH的长,最后依据BE=AD﹣GH求解即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=CBABC=90°FAB延长线上一点,点EBC上,且AE=CF

1)求证:ABE≌△CBF

2)若CAE=30°,求ACF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将一副三角尺的直角顶点重合在一起.

(1)若 OB ∠DOC 的角平分线,求∠AOD 的补角的度数是多少?

(2)若 ∠COB ∠DOA 的比是 2:7,求 ∠BOC 的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCDDEFG都是正方形,ABCG交于点下列结论:其中正确的有______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,D从点C出发沿CA方向以每秒2个单位长的速度向点A匀速运动,同时点E从点A出发沿AB方向以每秒1个单位长的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动,设点DE运动的时间是t过点D于点F,连接DEEF

求证:

四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,说明理由.

t为何值时,为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将连续的奇数 1,3,5,7,9,…,排成如图的数阵.

(1)十字框中的五个数的和与中间数 15 有什么关系?

(2)设中间数为 a,用式子表示十字框中五个数之和;

(3)十字框中五个数之和能等于 2 005 吗?若能,请写出这五个数;若不能, 说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,则ADE的面积为( )

A.1 B.2 C.5 D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将边长为10的正三角形OAB放置于平面直角坐标系xOy中,C是AB边上的动点(不与端点A,B重合),作CD⊥OB于点D,若点C,D都在双曲线y= 上(k>0,x>0),则k的值为(  )

A.25
B.18
C.9
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】OC∠AOB分成两部分且有下列两个等式成立:

①∠AOC=直角+∠BOC②∠BOC=平角-∠AOC,问

(1)OAOB的位置关系怎样?

(2)OC是否为∠AOB的平分线?并写出判断的理由.

查看答案和解析>>

同步练习册答案