精英家教网 > 初中数学 > 题目详情
7.如图,在平面直角坐标系中,∠ABO=2∠BAO,P为x轴正半轴一动点,BC平分∠ABP,PC平分∠APF,OD平分∠POE
(1)求∠BAO的度数;
(2)求值:∠C=15°+$\frac{1}{2}$∠OAP;
(3)P在运动中,∠C+∠D的值是否变化?若发生变化,说明理由;若不变,求其值.

分析 (1)在RT△AOB中根据已知和两锐角互余的性质即可求出∠BAO的度数;
(2)根据外角的性质表示出∠C,得到∠C与∠OAP之间的数量关系;
(3)根据对顶角相等,分别表示出∠C和∠D,得到∠C+∠D的值.

解答 解:(1)∵∠AOB=90°,∠ABO=2∠BAO,
∴∠BAO=30°;
(2)∵∠APF=∠OAP+∠AOP,∠CBF=$\frac{1}{2}$∠ABO=30°
∴∠C=$\frac{1}{2}$∠APF-∠CBF
=$\frac{1}{2}$∠OAP+45°-30°=$\frac{1}{2}$∠OAP+15°
(3)∠C+∠D不变.
∠CPF=∠OPD,
∠CPF=∠C+30°,
∠OPD=180°-45°-∠D
∠C+30°=180°-45°-∠D
∠C+∠D=105°.

点评 本题考查的是三角形内角和定理、三角形的外角的性质、角平分线的定义,掌握定理、性质是解题的关键,解答时,注意结合图形正确写出各角之间的关系.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

12.已知梯形的两条对角线把中位线三等分,则梯形上底与下底的比为(  )
A.1:2B.1:3C.2:3D.3:5

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

13.若最简二次根式$\sqrt{a+2}$与$\sqrt{4-a}$是同类二次根式,则a=1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD和CE交于点O,AO的延长线交BC于F,求证:AF垂直平分BC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.在平面直角坐标系中,点A从原点O出发,每次向上移动2个单位长度或向右移动1个单位长度.
(1)实验操作:
在平面直角坐标系中描出点A从点O出发,移动1次后,2次后,3次后可能到达的点,并把相应点的坐标填写在表格中:
A从点O出发移动次数可能到达的点的坐标
1次(0,2),(1,0)
2次(0,4),(1,2),(2,0)
3次(0,6),(1,4),(2,2),(3,0)
(2)观察发现:
任一次移动,点A可能到达的点在我们学过的一种函数的图象上,
①求移动1次后点A可能到达的点所在图象的函数表达式;
②移动2次后在函数y=-2x+4的图象上,…由此我们知道,移动n次后在函数y=-2x+2n的图象上.(请填写相应的函数表达式)
(3)探索运用:
点A从点O出发经过n次移动后,到达直线y=x上的点B,且平移的总路径长为20,求点B的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,菱形OABC的顶点O是坐标原点,顶点A在x轴的正半轴上,顶点B、C均在第一象限,OA=2,∠AOC=60°,点D在边AB上,将四边形ODBC沿直线OD翻折,使点B和点C分别落在这个坐标平面内的点B′和点C′处,且∠C′DB′=60°,则点B′的坐标是(3,-$\sqrt{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.现有如下一系列图形:

当n=1时,矩形ABCD分为2个直角三角形,总计数出5条边;
当n=2时,矩形ABCD分为8个直角三角形,总计数出16条边;
当n=3时,矩形ABCD分为18个直角三角形,总计数出33条边;

用n表示如上规律,并求当n=10时,矩形ABCD应分为多少个直角三角形,总计数出多少条边?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.如图,在四边形ABCD中,AB∥CD,∠A=90°,CD=2,AB=3,AD=7,点P为线段AD上一点,CP⊥BP,求DP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.如图所示,在△ABC与△AEF中,AB=AE,BC=EF,∠B=∠E,AB交EF于点D,给出下列结论:①∠EAB=∠FAC;②AF=AC;③∠C=∠EFA;④AD=AC,其中正确的结论是①②③(填写所有正确结论的序号).

查看答案和解析>>

同步练习册答案