精英家教网 > 初中数学 > 题目详情

请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容。图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2)。线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1。求出点M的坐标并证明你的结论。

解:M(        

证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=    度。

∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(    ),∠BDM=∠BMD(同理),

∴∠ACM= (180°-    ) =45°。 ∠BDM=45°(同理)。

∴∠ACM=∠BDM。

在△ACM与△BDM中,

∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

 

【答案】

解:补全坐标系及缺失的部分如下:

M(  4    0  

证明:∵CA⊥AB,DB⊥AB,∴∠CAM=∠DBM=  90  度。

∵CA=AM=3,DB=BM=2,∴∠ACM=∠AMC(  等边对等角  ),∠BDM=∠BMD(同理),

∴∠ACM= (180°-  90°  ) =45°。 ∠BDM=45°(同理)。

∴∠ACM=∠BDM。

在△ACM与△BDM中,

∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)。

【解析】

试题分析:根据题意补图,应用相似三角形的判定证明。

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•河池)请在图中补全坐标系及缺失的部分,并在横线上写恰当的内容.图中各点坐标如下:A(1,0),B(6,0),C(1,3),D(6,2).线段AB上有一点M,使△ACM∽△BDM,且相似比不等于1.求出点M的坐标并证明你的结论.
解:M(
4
4
0
0

证明:∵CA⊥AB,DB⊥AB
∴∠CAM=∠DBM=
90
90
度.
∵CA=AM=3,DB=BM=2
∴∠ACM=∠AMC(
等边对等角
等边对等角
),∠BDM=∠BMD(同理),
∴∠ACM=
1
2
(180°-
90°
90°
)=45°.∠BDM=45°(同理).
∴∠ACM=∠BDM
在△ACM与△BDM中,
∠CAM=∠DBM
_(______)_

∴△ACM∽△BDM(如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似)

查看答案和解析>>

同步练习册答案