精英家教网 > 初中数学 > 题目详情
1.如图,直线a,b被直线c所截,a∥b,∠2=∠3,若∠1=80°,则∠4等于(  )
A.20°B.40°C.60°D.80°

分析 先根据平行线的性质求出∠2+∠3的度数,再由∠2=∠3即可得出结论.

解答 解:∵a∥b,∠1=80°,
∴∠2+∠3=80°,∠3=∠4.
∵∠2=∠3,
∴∠3=40°,
∴∠4=40°.
故选B.

点评 本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

11.如图1,E是直线AB,CD内部一点,AB∥CD,连接EA,ED.
(1)探究猜想:①∠A=30°,∠D=40°,则∠AED等于多少度?
②若∠A=20°,∠D=60°,则∠AED等于多少度?
③猜想图1中∠AED、∠EAB、∠EDC的关系并说明理由.
(2)拓展应用,如图2,线段FE与长方形ABCD的边AB交于点E,与边CD 交于点F.图2中①②分别是被线段FE隔开的2个区域(不含边界),P是位于以上两个区域内的一点,猜想∠PEB,∠PFC,∠EPF的关系(不要求说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.写出方程5x-3y=4的一个解,要求满足:
(1)x、y相等:$\left\{\begin{array}{l}{x=___}\\{y=___}\end{array}\right.$,(2)x、y互为相反数:$\left\{\begin{array}{l}{x=___}\\{y=___}\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.某校初三学生开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间内每人踢100个以上(含100)为优秀.下表是成绩最好的甲班和乙班5名学生的比赛数据(单位:个):
1号2号3号4号5号总数
甲班1009811089103500
乙班891009511997500
经统计发现两班总数相等.此时有学生建议,可以通过考察数据中的其他信息作为参考.
请你回答下列问题:
(1)填空:甲班的优秀率为60%,乙班的优秀率为40%;
(2)填空:甲班比赛数据的中位数为100,乙班比赛数据的中位数为97;
(3)填空:估计两班比赛数据的方差较小的是甲班(填甲或乙)
(4)根据以上三条信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

16.某学校为了解在校生的体能素质情况,从全校八年级学生中随机抽取了部分学生进行了一次体育科目测试(把测试结果分为四个等级:A级:优秀;B级:良好;C级:及格;D级:不及格)并将测试结果绘成了如下两幅不完整的统计图,请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生人数是40;
(2)扇形统计图中∠α的度数是54°,并把条形统计图补充完整;
(3)该校八年级有学生1500名,如果全部参加这次体育科目测试,那么估计不及格的人数为0.3;
(4)测试老师从被测学生中随机抽取一名,所抽学生为B级的概率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

6.如图,为了估计河的宽度,在河的对岸选定一个目标点P,在近岸取点Q和S,使点P,Q,S在一条直线上,且直线PS与河垂直,在过点S且与PS垂直的直线a上选择适当的点T,PT与过点Q且与PS垂直的直线b的交点为R.如果QS=60m,ST=120m,QR=80m,则河的宽度PQ为(  )
A.40mB.60mC.120mD.180m

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知关于x的一元二次方程x2-6x+k+3=0有两个不相等的实数根?
(1)求k的取值范围;
(2)若k为大于3的整数,且该方程的根都是整数,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.根据某市统计局提供的2010~2014年该市地铁运营的相关数据,绘制的统计图表如下:

根据以上信息解答下列问题:
(1)直接写出“2014年某市居民乘地铁出行距离情况统计图”中m的值;
(2)从2010年到2014年,该市地铁的日均客流量每年的增长率近似相等,估算2015年该市地铁运营的日均客流量约为483万人次;
(3)自2015年起,该市地铁运营实行了新票价:乘地铁5公里内(含5公里)收费2元,乘地铁5~15公里(含15公里)收费3元,乘地铁15公里以上收费4元.如果2015年该市居民乘地铁出行距离情况与2014年基本持平,估算2015年该市地铁运营平均每日票款收入约为1593.9万元.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.如图,在等腰Rt△OAA1中,∠OAA1=90°,OA=1,以OA1为直角边作等腰Rt△OA1A2,以OA2为直角边作等腰Rt△OA2A3,…,则OAn的长度为$\sqrt{{2}^{n}}$.

查看答案和解析>>

同步练习册答案