A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
分析 根据二次函数具有对称性,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,可知x=0和x=2时的函数值一样,由图象可以判断①;根据函数图象与x轴的交点可判断②;根据函数开口向下,可知y=ax2+bx+c具有最大值,可判断③;根据抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过(-1,0)点,可知y=0时,x=2,从而可以判断④.
解答 解:∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,
∴x=0与x=2时的函数值相等,由图象可知,x=0的函数值大于x=-$\frac{1}{2}$时的函数值.
∴点(-$\frac{1}{2}$,y1)和(2,y2)都在抛物线上,则y1<y2(故①正确).
∵x=0时,函数图象与x轴两个交点,
∴ax2+bx+c=0时,b2-4ac>0(故②正确).
∵由图象可知,x=1时,y=ax2+bx+c取得最大值,
∴当m≠1时,am2+bm+c<a+b+c.
即m(am+b)<a+b(m≠1的实数)(故③正确).
∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,且经过(-1,0)点,
∴当y=0时,x的值为-1或3.
∴ax2+bx+c=0时的两根之积为:${x}_{1}•{x}_{2}=\frac{c}{a}$,x1•x2=(-1)×3=-3.
∴$\frac{c}{a}$=-3(故④正确).
故选D
点评 本题考查二次函数图象与系数的关系,解题的关键是利用数形结合的思想将二次函数与函数图象结合在一起.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com