精英家教网 > 初中数学 > 题目详情
如图,⊙O1与⊙O2外切于点P,AB是两圆外公切线,A、B为切点,AB与O1O2的延长线交于C点,在AP延长线上有一点E,满足
AP
AB
=
AC
AE
,PE交⊙O2于D.
(1)求证:AC⊥EC;
(2)求证:PC=EC;
(3)若AP=4,PD=
9
4
,求
BC
EC
的值.
(1)证明:连接PB,OA,OB,
∵AB为公切线
∴∠1=
1
2
∠O1,∠2=
1
2
∠PO2B
∵O1AO2B
∴∠O1+∠PO2B=180°
∴∠1+∠2=90°
∴∠APB=90°
AP
AB
=
AC
AE
,∠1=∠1
∴△APB△ACE
∴∠ACE=∠APB=90°
∴AC⊥EC;

(2)证明:∵BP⊥AE于P
∴∠3+∠4=90°
∵AB为公切线
∴O2B⊥AB于B
∴∠2+∠5=90°
又∵O2P=O2B
∴∠4=∠5
∴∠2=∠3
由(1)知△APB△ACE
∴∠E=∠2
∴∠3=∠E
∴PC=EC;

(3)作内公切线PH,交AB于H,
∴AH=PH=HB
∴∠APB=90°
∴∠DPB=90°
∴DB为⊙O直径
∴DB⊥AB于B
∴Rt△ABD中,BP为斜边AD上的高
∴PB2=AP•DP=4×
9
4

∴PB=3
∵∠DBC=∠APB=90°,∠4=∠5
∴∠DBC+∠5=∠APB+∠C
∴∠PBC=∠APC
又∵∠6=∠6
∴△PBC△APC
BC
PC
=
PB
AP
=
3
4

又∵PC=EC
BC
EC
=
3
4

练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

如图,在△ABC中,AB=BC=2,以AB为直径的⊙O与BC相切于点B,则AC等于(  )
A.
2
B.
3
C.2
2
D.2
3

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在直角梯形ABCD中,AD⊥BC,AB⊥AD,AB=10
3
,AD、BC的长是方程x2-20x+75=0的两根,那么,以点D为圆心、AD为半径的圆与以点C为圆心、BC为半径的圆位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,⊙O1与⊙O2相交于A,B两点,且直线O1O2交AB于C,说明AC=BC,AB⊥O1O2

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在同一平面内,两圆的半径分别为方程(x-1)(x-
2
)=0
的两个不同实数根,两圆圆心距为2-
2
,则两圆的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

(1)如图1,若⊙O1与⊙O2外切于A,BC是⊙O1与⊙O2外公切线,B、C为切点,求证:AB⊥AC.
(2)如图2,若⊙O1与⊙O2外离,BC是⊙O1与⊙O2的外公切线,B、C为切点,连心线O1O2分别交⊙O1、⊙O2于M、N,BM、CN的延长线交于P,则BP与CP是否垂直?证明你的结论.
(3)如图3,若⊙O1与⊙O2相交,BC是⊙O1与⊙O2的公切线,B、C为切点,连心线O1O2分别交⊙O1、⊙O2于M、N,Q是线段MN上一点,连接BQ、CQ,则BQ与CQ是否垂直?证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知⊙O1与⊙O2的半径分别为6和2,O1O2=4,则⊙O1与⊙O2的位置关系是(  )
A.外切B.相交C.内切D.内含.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知等边△ABC边长为a,D、E分别为AB、AC边上的动点,且在运动时保持DEBC,如图(1),⊙O1与⊙O2都不在△ABC的外部,且⊙O1、⊙O2分别与∠B和∠C的两边及DE都相切,其中和DE、BC的切点分别为M、N、M′、N′.
(1)求证:⊙O1和⊙O2是等圆;
(2)设⊙O1的半径长为x,圆心距O1O2为y,求y与x的函数关系式,并写出x的取值范围;
(3)当⊙O1与⊙O2外切时,求x的值;
(4)如图(2),当D、E分别是AB、AC边的中点时,将⊙O2先向左平移至和⊙O1重合,然后将重合后的圆沿着△ABC内各边按图(2)中箭头的方向进行滚动,且总是与△ABC的边相切,当点O1第一次回到它原来的位置时,求点O1经过的路线长度?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在锐角△ABC中,∠B=30°,以A为圆心,AB长为半径作⊙A,以C为圆心,AC长为半径作⊙C,则⊙A与⊙C的位置关系为(  )
A.外切B.相交C.内切D.内含

查看答案和解析>>

同步练习册答案