精英家教网 > 初中数学 > 题目详情

已知图1和图2中的每个小正方形的边长都是1个单位.

(1)将图1中的格点△ABC,先向右平移3个单位,再向上平移2个单位,得到△A1B1C1,请你在图1中画出△A1B1C1.

(2)在图2中画出一个与格点△DEF相似但相似比不等于1的格点三角形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了参加市教委举行的“争创绿色学校,美化校园环境”的活动,某区教委决定委托园林公司对所辖甲、乙两所学校进行校园绿化工作.已知甲校有如图1所示的矩形内阴影部分空地需铺设草坪,乙校有如图2所示的平行四边形内阴影部分空地需铺设草坪(图1,图2中数据单位均为“米”).在A、B两地分别有同种草皮4500米2和2500米2出售,且售价一样.若园林公司向A、B两地购买草皮,其路程和运费单价表如下:
   甲校 乙校 
 路程(千米) 运费单价(元)  路程(千米)  运费单价(元)  
 A地           20           0.3           10             0.3
 B地           15           0.2           20             0.2
(注:运费单价表示每平方米草皮运送1千米所需要的人民币)
(1)分别求出图1、图2的阴影部分面积;
(2)若甲校从A地购买x米2的草皮(x取整数),因路程关系,甲校从A地购买的草皮数不超过甲校从B地购买的草皮数,乙校从B地购买的草皮数大于甲校从B地购买的草皮数的
1
5
,那么甲校乙校从A,B两地购买草皮的方案有多少种?
(3)在(2)的条件下,请你设计出总运费最低的草皮运送方案,并说明理由.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为     

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,

请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为     

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,

请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省衢州市江山二中九年级(上)第一次质量检测数学试卷(解析版) 题型:解答题

如图甲所示,已知抛物线经过原点O和x轴上另一点E,顶点M的坐标为(2,4);
(1)求抛物线函数关系式;
(2)矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3,将矩形ABCD以每秒1个单位长度的速度从图甲所示的位置沿x轴的正方向匀速平移,同时一动点P也以相同的速度从点A出发向B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图乙所示).
①当时,判断点P是否在直线ME上,并说明理由;
②设以P、N、C、D为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由;
③现将甲图中的抛物线向右平移m(m>0)个单位,所得抛物线与x轴交于G、F两点,与原抛物线交于点Q,设△FGQ的面积为S,求S关于m的函关系式.

查看答案和解析>>

科目:初中数学 来源:2013年初中毕业升学考试(内蒙古呼和浩特卷)数学(解析版) 题型:解答题

如图,已知二次函数的图象经过点A(6,0)、B(﹣2,0)和点C(0,﹣8).

(1)求该二次函数的解析式;

(2)设该二次函数图象的顶点为M,若点K为x轴上的动点,当△KCM的周长最小时,点K的坐标为    

(3)连接AC,有两动点P、Q同时从点O出发,其中点P以每秒3个单位长度的速度沿折线OAC按O→A→C的路线运动,点Q以每秒8个单位长度的速度沿折线OCA按O→C→A的路线运动,当P、Q两点相遇时,它们都停止运动,设P、Q同时从点O出发t秒时,△OPQ的面积为S.

①请问P、Q两点在运动过程中,是否存在PQ∥OC?若存在,请求出此时t的值;若不存在,请说明理由;

②请求出S关于t的函数关系式,并写出自变量t的取值范围;

③设S0是②中函数S的最大值,直接写出S0的值.

 

查看答案和解析>>

同步练习册答案