精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,AB=8BC=6.点E在边AB上,点F在边CD上,点GH在对角线AC上,若四边形EGFH是菱形,则AE的长是_________________

【答案】

【解析】

首先连接EFACO,由矩形ABCD中,四边形EGFH是菱形,易证得CFO≌△AOEAAS),即可得OA=OC,然后由勾股定理求得AC的长,继而求得OA的长,又由AOE∽△ABC,利用相似三角形的对应边成比例,即可求得答案.

连接EFACO

∵四边形EGFH是菱形,

EFACOE=OF

∵四边形ABCD是矩形,

∴∠B=D=90°ABCD

∴∠ACD=CAB

CFOAOE中,

∴△CFO≌△AOEAAS),

AO=CO

AC=

AO=AC=5

∵∠CAB=CAB,∠AOE=B=90°

∴△AOE∽△ABC

AE=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,过正方形ABCD的顶点DDEACBC的延长线于点E

1)判断四边形ACED的形状,并说明理由;

2)若BD=8cm,求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经销一种商品,已知其每件进价为40元。现在每件售价为70元,每星期可卖出500件。该商场通过市场调查发现:若每件涨价1元,则每星期少卖出10件;若每件降价1元,则每星期多卖出mm为正整数)件。设调查价格后每星期的销售利润为W元。

(1)设该商品每件涨价xx为正整数)元,

①若x=5,则每星期可卖出____件,每星期的销售利润为_____元;

②当x为何值时,W最大,W的最大值是多少。

(2)设该商品每件降价yy为正整数)元,

①写出WY的函数关系式,并通过计算判断:当m=10时每星期销售利润能否达到(1)中W的最大值;

②若使y=10时,每星期的销售利润W最大,直接写出W的最大值为_____。

(3)若每件降价5元时的每星期销售利润,不低于每件涨价15元时的每星期销售利润,求m的取值范围。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,EFAD,将平行四边形ABCD沿着EF对折.设∠1的度数为,则∠C=______.(用含有n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A(2,0),B(6,0),CB⊥x轴于点B,连接AC

画图操作:

(1)在y正半轴上求作点P,使得∠APB=∠ACB(尺规作图,保留作图痕迹)

理解应用:

(2)在(1)的条件下,

若tan∠APB ,求点P的坐标

②当点P的坐标为 时,∠APB最大

拓展延伸:

(3)若在直线yx+4上存在点P,使得∠APB最大,求点P的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为⊙O的内接三角形,BC=24 , ,点D为弧BC上一动点,CE垂直直线OD于点E, 当点D由B点沿弧BC运动到点C时,点E经过的路径长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】股民小胡上星期五以每股13.1元的价格买进某种股票1000股,该股票本周的涨跌情况(表格数字表示比前--天涨或跌多少元)如下表(单位:):

星期

每股涨跌

-0.3

0

-0.1

+0.2

+0.1

(1)本周内最高价是每股__________元最低价是每股元_________

(2)如果小胡在星期五收盘前将全部股票卖出,他的收益情况如何?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如就是完全对称式(代数式中换成bb换成,代数式保持不变).下列三个代数式:①;②;③.其中是完全对称式的是(

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的袋子中装有三个完全相同的小球,分别标有数字3、4、5.从袋子中随机取出一个小球,用小球上的数字作为十位的数字,然后放回;再取出一个小球,用小球上的数字作为个位上的数字,这样组成一个两位数,试问:按这种方法能组成哪些位数?十位上的数字与个位上的数字之和为9的两位数的概率是多少?用列表法或画树状图法加以说明.

查看答案和解析>>

同步练习册答案