精英家教网 > 初中数学 > 题目详情
如图,点P是半径为6的⊙O外一点,过点P作⊙O的割线PAB,点C是⊙O上一点,且PC2=PA•PB.求证:
(1)PC是⊙O的切线;
(2)若sin∠ACB=
5
3
,求弦AB的长;
(3)已知在(2)的条件下,点D是劣弧AB的中点,连接CD交AB于E,若AC:BC=1:3,求CE的长.
(1)证明:连接CO并延长交⊙O于M,连接AM,
∵PC2=PA•PB,
PC
PA
=
PB
PC

∵∠P=∠P,
∴△PAC△PCB,∠PCA=∠B.
∵∠B=∠M,
∴∠M=∠PCA.
∵CM是直径,
∴∠MAC=90°.
∴∠ACM+∠M=90°.
∴∠ACM+∠PCA=90°.
即∠PCM=90°.
∴CM⊥PC.
∴PC是⊙O的切线.

(2)连接AO,并延长AO交⊙O于N,连接BN,
∵AN是直径,
∴∠ABN=90°∠N=∠ACB,AN=12.
在Rt△ABN中,AB=ANsin∠ACB=12sin∠ACB=12×
5
3
=4
5


(3)连接OD交AB于F,
∴OD⊥AB.
∵D是劣弧AB的中点,
∴∠ACD=∠BCD.
∵∠PCA=∠B,
∴∠PCE=∠PEC.
∴PC=PE由△PCA△PBC得PC=3PA.
∵PC2=PA•PB,
∴9PA2=PA•PB.
∴9PA=PB=PA+AB.
∴8PA=AB=4
5

∴PA=
5
2

∴PC=PE=
3
5
2

AE=
5
,AB=4
5
,AF=2
5
,EF=
5

在Rt△OAF中,可求得OF=4,
∴DF=OD-OF=6-4=2,
∴DE=3.
∵AE•EB=DE•CE,
∴CE=5.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

科目:初中数学 来源: 题型:

查看答案和解析>>

同步练习册答案