精英家教网 > 初中数学 > 题目详情
(1)探究新知:
①如图1,已知ADBC,AD=BC,点M,N是直线CD上任意两点.
求证:△ABM与△ABN的面积相等.
②如图2,已知ADBE,AD=BE,ABCDEF,点M是直线CD上任一点,点G是直线EF上任一点,试判断△ABM与△ABG的面积是否相等,并说明理由.
(2)结论应用:
如图3,抛物线y=ax2+bx+c的顶点为C(1,4),交x轴于点A(3,0),交y轴于点D,试探究在抛物线y=ax2+bx+c上是否存在除点C以外的点E,使得△ADE与△ACD的面积相等?若存在,请求出此时点E的坐标;若不存在,请说明理由.
证明:(1)①分别过点M,N作ME⊥AB,NF⊥AB,垂足分别为点E,F
∵ADBC,AD=BC,
∴四边形ABCD为平行四边形;
∴ABCD;
∴ME=NF;
∵S△ABM=
1
2
AB•ME
,S△ABN=
1
2
AB•NF

∴S△ABM=S△ABN(1分)
②相等;理由如下:分别过点D,E作DH⊥AB,EK⊥AB,垂足分别为H,K;
则∠DHA=∠EKB=90°;
∵ADBE,
∴∠DAH=∠EBK;
∵AD=BE,
∴△DAH≌△EBK;
∴DH=EK;(2分)
∵CDABEF,
∴S△ABM=
1
2
AB•DH
,S△ABG=
1
2
AB•EK

∴S△ABM=S△ABG;(3分)
(2)存在.(4分)
因为抛物线的顶点坐标是C(1,4),
所以,可设抛物线的表达式为y=a(x-1)2+4;
又因为抛物线经过点A(3,0),
所以将其坐标代入上式,得0=a(3-1)2+4,解得a=-1;
∴该抛物线的表达式为y=-(x-1)2+4,
即y=-x2+2x+3;(5分)
∴D点坐标为(0,3);
设直线AD的表达式为y=kx+3,
代入点A的坐标,得0=3k+3,解得k=-1;
∴直线AD的表达式为y=-x+3;
过C点作CG⊥x轴,垂足为G,交AD于点H;则H点的纵坐标为-1+3=2;
∴CH=CG-HG=4-2=2;(6分)
设点E的横坐标为m,则点E的纵坐标为-m2+2m+3;
过E点作EF⊥x轴,垂足为F,交AD于点P,则点P的纵坐标为3-m,EFCG;
由﹙1﹚可知:若EP=CH,则△ADE与△ADC的面积相等;
①若E点在直线AD的上方,
则PF=3-m,EF=-m2+2m+3,
∴EP=EF-PF=-m2+2m+3-(3-m)=-m2+3m;

∴-m2+3m=2,
解得m1=2,m2=1;(7分)
当m=2时,PF=3-2=1,EF=1+2=3;
∴E点坐标为(2,3);
同理当m=1时,E点坐标为(1,4),与C点重合;(8分)
②若E点在直线AD的下方,
则PE=(3-m)-(-m2+2m+3)=m2-3m;(9分)
∴m2-3m=2,
解得m3=
3+
17
2
m4=
3-
17
2
;(10分)
m=
3+
17
2
时,E点的纵坐标为3-
3+
17
2
-2=-
1+
17
2

m=
3-
17
2
时,E点的纵坐标为3-
3-
17
2
-2=
-1+
17
2

∴在抛物线上存在除点C以外的点E,使得△ADE与△ACD的面积相等,E点的坐标为E1(2,3);E2
3+
17
2
,-
1+
17
2
);E3
3-
17
2
-1+
17
2
).(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

如图,是一学生掷铅球时,铅球行进高度y(cm)的函数图象,点B为抛物线的最高点,则该同学的投掷成绩为______米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,抛物线y=ax2+bx-3a经过A(-1,0)、C(0,-3)两点,与x轴交于另一点B.
(1)求此抛物线的解析式;
(2)已知点D(m,-m-1)在第四象限的抛物线上,求点D关于直线BC对称的点D'的坐标.
(3)在(2)的条件下,连接BD,问在x轴上是否存在点P,使∠PCB=∠CBD?若存在,请求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:抛物线y=-x2+(2m+2)x-(m2+4m-3)
(1)抛物线与x轴有两个交点,求m的取值范围;
(2)当m为不小于零的整数,且抛物线与x轴的两个交点是整数点时,求此抛物线的解析式;
(3)若设(2)中的抛物线的顶点为A,与x轴的两个交点中右侧的交点为B,M为y轴上一点,且MA=MB,求M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形ABCO是平行四边形,AB=4,OB=2,抛物线过A、B、C三点,与x轴交于另一点D.一动点P以每秒1个单位长度的速度从B点出发沿BA向点A运动,运动到A停止,同时一动点Q从点D出发,以每秒3个单位长度的速度沿DC向点C运动,与点P同时停止.
(1)求抛物线的解析式;
(2)若抛物线的对称轴与AB交于点E,与x轴交于点F,当点P运动时间t为何值时,四边形POQE是等腰梯形?
(3)当t为何值时,以P、B、O为顶点的三角形与以点Q、B、O为顶点的三角形相似?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知,抛物线y=ax2-2ax与x轴交于A、B两点(点A在点B的右侧),且抛物线与直线y=-2ax-1的交点恰为抛物线的顶点C.
(1)求a的值;
(2)如果直线y=-x+b(
2
≤b≤
3
)与x轴交于点D,与线段BC交于点E,求△CDE面积的最大值;
(3)在(2)的结论下,在x轴下方,是否存在点F,使△BDF与△BCD相似?如果存在,请求出点F的坐标;不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,已知抛物线y1=-2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1、y2.若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0.下列判断:
①当x<0时,y1>y2
②当x<0时,x值越大,M值越小;
③使得M大于2的x值不存在;
④使得M=1的x值是-
1
2
2
2

其中正确的是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

对于三个数a,b,c,用max{a,b,c}表示这三个数中最大的数.例如:max{1,2,3}=3.则:
(1)max{sin30°,(
2
-1)0
,tan30°}=______;
(2)如果max{5,3x+2,3-2x}=5,则x的取值范围是______;
(3)max{x2+2,-x+4,x}的最小值为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

苹果熟了,从树上落下所经过的路程s与下落的时间t满足s=
1
2
gt2(g是不为0的常数),则s与t的函数图象大致是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案