2£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬¶þ´Îº¯Êýy=ax2+bx+c£¨a£¾0£©µÄͼÏóµÄ¶¥µãΪD£¬ÓëyÖá½»ÓÚµãC£¬ÓëxÖá½»ÓÚA¡¢BÁ½µã£¬µãAÔÚÔ­µãµÄ×ó²à£¬µãBµÄ×ø±êΪ£¨3£¬0£©£¬OB=OC=3OA£®
£¨1£©ÇóÕâ¸ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©Èçͼ£¬ÈôµãG£¨2£¬m£©ÊǸÃÅ×ÎïÏßÉÏÒ»µã£¬EÊÇÖ±ÏßAGÏ·½Å×ÎïÏßÉϵÄÒ»¶¯µã£¬µ±µãEÔ˶¯µ½Ê²Ã´Î»ÖÃʱ£¬¡÷AEGµÄÃæ»ý×î´ó£¿Çó´ËʱµãEµÄ×ø±êºÍ¡÷AEGµÄ×î´óÃæ»ý£»
£¨3£©ÈôƽÐÐÓÚxÖáµÄÖ±ÏßÓë¸ÃÅ×ÎïÏß½»ÓÚM¡¢NÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²ÓëxÖáÏàÇУ¬Çó¸ÃÔ²µÄ°ë¾¶£®

·ÖÎö £¨1£©¸ù¾ÝÒÑÖªÌõ¼þ£¬Ò×ÇóµÃC¡¢AµÄ×ø±ê£¬¿ÉÓôý¶¨ÏµÊý·¨Çó³öÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©¿É·Ö±ð¹ýE¡¢G×÷xÖáµÄ´¹Ïߣ¬Éè´¹×ãΪF¡¢H£»ÄÇô¡÷AGEµÄÃæ»ý=¡÷AEFµÄÃæ»ý+ËıßÐÎFHGEµÄÃæ»ý-¡÷AGHµÄÃæ»ý£¬Éè³öEµãµÄ×ø±ê£¬¼´¿É±íʾ³öFµã×ø±ê¼°EFµÄ³¤£¬¸ù¾ÝÉÏÃæËùµÃ³öµÄÃæ»ý¼ÆËã·½·¨£¬¿ÉµÃ³ö¹ØÓÚ¡÷AGEµÄÃæ»ýÓëEµãºá×ø±êµÄº¯Êý¹Øϵʽ£¬¸ù¾ÝËùµÃº¯ÊýµÄÐÔÖÊ£¬¼´¿ÉÇó³ö¡÷AGEµÄ×î´óÃæ»ý¼°¶ÔÓ¦µÄEµã×ø±ê£»
£¨3£©¸ù¾ÝÅ×ÎïÏߺÍÔ²µÄ¶Ô³ÆÐÔ£¬ÖªÔ²ÐıØÔÚÅ×ÎïÏߵĶԳÆÖáÉÏ£¬ÓÉÓÚ¸ÃÔ²ÓëxÖáÏàÇУ¬¿ÉÓÃÔ²µÄ°ë¾¶±íʾ³öM¡¢NµÄ×ø±ê£¬½«ÆäÈëÅ×ÎïÏߵĽâÎöʽÖУ¬¼´¿ÉÇó³öÔ²µÄ°ë¾¶£»£¨Ðè×¢ÒâµÄÊÇÔ²ÐÄ¿ÉÄÜÔÚxÖáÉÏ·½£¬Ò²¿ÉÄÜÔÚxÖáÏ·½£¬ÐèÒª·ÖÀàÌÖÂÛ£©

½â´ð ½â£º£¨1£©ÓÉÒÑÖªµÃ£ºC£¨0£¬-3£©£¬A£¨-1£¬0£©
½«A¡¢B¡¢CÈýµãµÄ×ø±ê´úÈëµÃ$\left\{\begin{array}{l}{a-b+c=0}\\{9a+3b+c=0}\\{c=-3}\end{array}\right.$
½âµÃ£º$\left\{\begin{array}{l}{a=1}\\{b=-2}\\{c=-3}\end{array}\right.$
ËùÒÔÕâ¸ö¶þ´Îº¯ÊýµÄ±í´ïʽΪ£ºy=x2-2x-3£»
£¨2£©µ±x=2ʱ£¬y=x2-2x-3=-3£¬¼´G£¨2£¬-3£©£¬
ÉèAGµÄ½âÎöʽΪy=kx+b£¬½«A¡¢G´úÈ뺯Êý½âÎöʽ£¬µÃ
$\left\{\begin{array}{l}{-k+b=0}\\{2k+b=-3}\end{array}\right.$£¬½âµÃ$\left\{\begin{array}{l}{k=-1}\\{b=-1}\end{array}\right.$£¬
Ö±ÏßAGµÄ½âÎöʽΪy=-x-1£®
¹ýE×÷EF¡ÍxÖá½»AGÓÚ£¬FÈçͼ1£¬
EÔÚÅ×ÎïÏßÉÏ£¬FÔÚÖ±ÏßAGÉÏ£¬
ÉèEµã×ø±êΪ£¨n£¬n2-2n-3£©£¬F£¨n£¬-n-1£©£¬
EF=£¨-n-1£©-£¨n2-2n-3£©=-n2+n+2
S=$\frac{1}{2}$EF•£¨G-xA£©=$\frac{1}{2}$¡Á£¨-n2+n+2£©[2-£¨-1£©]
=-$\frac{3}{2}$£¨n-$\frac{1}{2}$£©2+$\frac{27}{8}$£¬
µ±n=$\frac{1}{2}$ʱ£¬S×î´óÖµÊÇ$\frac{27}{8}$£¬
n2-2n-3=-$\frac{15}{4}$£¬¼´E£¨$\frac{1}{2}$£¬-$\frac{15}{4}$£©£»
£¨3£©Èçͼ2£¬
¢Ùµ±Ö±ÏßMNÔÚxÖáÉÏ·½Ê±£¬ÉèÔ²µÄ°ë¾¶ÎªR£¨R£¾0£©£¬ÔòN£¨R+1£¬R£©£¬
´úÈëÅ×ÎïÏߵıí´ïʽ£¬½âµÃR=$\frac{1+\sqrt{17}}{2}$£»
¢Úµ±Ö±ÏßMNÔÚxÖáÏ·½Ê±£¬ÉèÔ²µÄ°ë¾¶Îªr£¨r£¾0£©£¬ÔòN£¨r+1£¬-r£©£¬
´úÈëÅ×ÎïÏߵıí´ïʽ£¬½âµÃr=$\frac{-1+\sqrt{17}}{2}$£¬
¡àÔ²µÄ°ë¾¶Îª$\frac{1+\sqrt{17}}{2}$»ò$\frac{-1+\sqrt{17}}{2}$£®

µãÆÀ ´ËÌ⿼²éÁ˶þ´Îº¯Êý½âÎöʽµÄÈ·¶¨¡¢ÇÐÏßµÄÐÔÖÊ¡¢Í¼ÐÎÃæ»ýµÄÇ󷨵È֪ʶ£¬×ÛºÏÐÔÇ¿£¬ÄÜÁ¦ÒªÇó½Ï¸ß£®¿¼²éѧÉúÊýÐνáºÏµÄÊýѧ˼Ïë·½·¨£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èçͼ£¬ÔÚ¡÷ABCÖУ¬ADÊÇ¡ÏBACµÄ½Çƽ·ÖÏߣ¬DE£¬DF·Ö±ðÊÇ¡÷ABDºÍ¡÷ACDµÄ¸ß£¬ÔòADÓëEFµÄ¹ØϵÊÇ£¨¡¡¡¡£©
A£®EF´¹Ö±Æ½·ÖADB£®AD´¹Ö±Æ½·ÖEF
C£®ADÓëEF»¥Ïഹֱƽ·ÖD£®²»ÄÜÈ·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÒ»´Îº¯ÊýµÄͼÏó¾­¹ý£¨2£¬5£©ºÍ£¨-1£¬2£©Á½µã£®
£¨1£©Çó´ËÒ»´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÓÃÃèµã·¨ÔÚ×ø±êϵÖл­³öÕâ¸öº¯ÊýµÄͼÏó£¬Çóº¯ÊýͼÏóÓëxÖá½»µãA¡¢ÓëyÖá½»µãBµÄ×ø±ê£»
£¨3£©Çó¡÷AOBµÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

10£®Èô¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ìax2+bx+6=0µÄÒ»¸ö¸ùΪx=-2£¬Ôò´úÊýʽ6a-3b+6µÄֵΪ£¨¡¡¡¡£©
A£®9B£®3C£®0D£®-3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬µÈÑüRt¡÷ABCÖУ¬BA=BC£¬¡ÏABC=90¡ã£¬µãDÔÚACÉÏ£¬½«¡÷ABDÈƵãBÑØ˳ʱÕë·½ÏòÐýת90¡ãºó£¬µÃµ½¡÷CBE£®
£¨1£©Çó¡ÏDCEµÄ¶ÈÊý£»
£¨2£©ÈôAB=4£¬CD=3AD£¬ÇóDEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÁâÐÎABCDÖУ¬Á½Ìõ¶Ô½ÇÏßAC¡¢BDÏཻÓÚµãO£¬µãEºÍµãF·Ö±ðÊÇBCºÍCDÉÏÒ»¶¯µã£¬ÇÒ¡ÏEOF+¡ÏBCD=180¡ã£¬Á¬½ÓEF£®
£¨1£©Èçͼ2£¬µ±¡ÏABC=60¡ãʱ£¬²ÂÏëÈýÌõÏ߶ÎCE¡¢CF¡¢ABÖ®¼äµÄÊýÁ¿¹ØϵCE+CF=$\frac{1}{2}$AB£®£»
£¨2£©Èçͼ1£¬µ±¡ÏABC=90¡ãʱ£¬ÈôAC=4$\sqrt{2}$£¬BE=$\frac{3}{2}$£¬ÇóÏ߶ÎEFµÄ³¤£»
£¨3£©Èçͼ3£¬µ±¡ÏABC=90¡ã£¬½«¡ÏEOFµÄ¶¥µãÒƵ½AOÉÏÈÎÒâÒ»µãO¡ä´¦£¬¡ÏEO¡äFÈƵãO¡äÐýת£¬ÈÔÂú×ã¡ÏEO¡äF+¡ÏBCD=180¡ã£¬O¡äE½»BCµÄÑÓ³¤ÏßÒ»µãE£¬ÉäÏßO¡äF½»CDµÄÑÓ³¤ÏßÉÏÒ»µãF£¬Á¬½ÓEF̽¾¿ÔÚÕû¸öÔ˶¯±ä»¯¹ý³ÌÖУ¬Ï߶ÎCE¡¢CF£¬O¡äCÖ®¼äÂú×ãµÄÊýÁ¿¹Øϵ£¬ÇëÖ±½Óд³öÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬Å×ÎïÏßC£ºy=ax2£®
£¨1£©ÈôÖ±Ïßl1£ºy=x-1ÓëÅ×ÎïÏßCÓÐÇÒÖ»ÓÐ1¸ö½»µã£¬ÇóÅ×ÎïÏßCµÄ½âÎöʽ£®
£¨2£©Èçͼ1£¬ÔÚ£¨1£©µÄÌõ¼þÏ£¬ÔÚyÖáÉÏÓÐÒ»µãA£¨0£¬4£©£¬¹ýµãA×÷Ö±Ïßl2ÓëÅ×ÎïÏßCÓÐÁ½¸ö½»µãM¡¢N£¨NλÓÚµÚÒ»ÏóÏÞ£©£¬¹ýµãN×÷xÖáµÄ´¹Ïߣ¬´¹×ãΪH£®ÊÔ̽¾¿£ºÊÇ·ñ´æÔÚl2£¬Ê¹¡÷MON¡×¡÷NHO£¿Èô´æÔÚ£¬Çó³öl2µÄ½âÎöʽ£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®
£¨3£©Èçͼ2£¬E¡¢FΪÅ×ÎïÏßC£¨y=ax2£©ÉÏÁ½¶¯µã£¬Ê¼ÖÕÂú×ãOE¡ÍOF£¬Á¬½ÓEF£¬ÔòÖ±ÏßEFÊÇ·ñºã¹ýÒ»¶¨µãG£¿Èô´æÔÚµãG£¬Ö±½Óд³öGµã×ø±ê£¨Óú¬aµÄ×ø±ê±íʾ£©£¬Èô²»´æÔÚ£¬¸øÓèÖ¤Ã÷£®
£¨²Î¿¼½áÂÛ£ºÈôÖ±Ïßl£ºy=kx+bÉÏÓÐÁ½µã£¨x1£¬y1£©¡¢£¨x2£¬y2£©£¬ÔòбÂÊk=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$£»µ±Á½Ö±Ïßl1¡¢l2µÄбÂʳ˻ýk1•k2=-1ʱ£¬l1¡Íl2£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÈôԲ׶µÄµ×Ãæ°ë¾¶Îª3£¬Ä¸Ïß³¤Îª4£¬ÔòÕâ¸öԲ׶µÄ²àÃæ»ýΪ £¨¡¡¡¡£©
A£®12¦ÐB£®21¦ÐC£®24¦ÐD£®42¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®Èô¹ØÓÚxµÄ·Öʽ·½³Ì$\frac{m}{x-2}$+$\frac{x+1}{2-x}$=3ÓÐÔö¸ù£¬ÔòmµÄÖµÊÇ£¨¡¡¡¡£©
A£®m=-1B£®m=2C£®m=3D£®m=0»òm=3

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸