【题目】(2016湖北襄阳第25题)
如图,已知点A的坐标为(-2,0),直线y=-+3与x轴,y轴分别交于点B和点C,连接AC,顶点为D的抛物线y=ax2+bx+c过A,B,C三点.
(1)请直接写出B,C两点的坐标,抛物线的解析式及顶点D的坐标;
(2)设抛物线的对称轴DE交线段BC于点E,P为第一象限内抛物线上一点,过点P作x轴的垂线,交线段BC于点F若四边形DEFP为平行四边形,求点P的坐标;
(3)设点M是线段BC上的一动点,过点M作MN∥AB,交AC于点N点.Q从点B出发,以每秒l个单位长度的速度沿线段BA向点A运动,运动时间为t(秒).当t(秒)为何值时,存在QMN为等腰直角三角形?
【答案】(1)(1)B(4,O),C(0,3),抛物线的解析式为顶点D的坐标为;(2)当点P坐标为(3,)时,四边形DEFP为平行四边形;(3)当t为或或时,存在△QMN为等腰直角三角形.
【解析】
试题分析:(1)由直线y=-+3的解析式即可得B,C两点的坐标,再用待定系数法即可求得抛物线的解析式,根据抛物线的解析式即可得抛物线的解析式;(2)设点P坐标为则点F的坐标为(m,-m+3),根据四边形DEFP为平行四边形,则PF=DE,由此列方程求得m的值,即可得点P的坐标;(3)分别以点M、N、Q为直角顶点讨论解决即可.
试题解析:(1)B(4,O),C(0,3).
抛物线的解析式为
顶点D的坐标为
(2)把x=1代入
因点P为第一象限内抛物线上一点,所以可设点P坐标为
点F的坐标为(m,-m+3).若四边形DEFP为平行四边形,则PF=DE
即-m2+m+3-(-m+3)=
解之,得m1=3,m2=1(不合题意,舍去).
∴当点P坐标为(3,)时,四边形DEFP为平行四边形.
(3)设点M的坐标为(n,-),MN交y轴于点G.
∽BAC
①当∠Q1MN=90°,MN=MQ2=OG时,解之,MN=2.
解之,
②当时,容易求出
③当∠MQ3N=90°,Q3M=Q3N时,NM=Q3K=OG
解之,得MN=3.
解之,得n=2,即
MN的中点K的坐标为即
∴当t为或或时,存在△QMN为等腰直角三角形.
科目:初中数学 来源: 题型:
【题目】随着人们生活水平的提高,家用轿车越来越多地进入家庭,小明家中买了一辆小轿车,他连续记录了7天中每天行驶的路程(如下表),以50 km为标准,多于50 km的记为“+”,不足50 km的记为“-”,刚好50 km的记为“0”.
第一天 | 第二天 | 第三天 | 第四天 | 第五天 | 第六天 | 第七天 | |
路程(km) | -8 | -11 | -14 | 0 | -16 | +41 | +8 |
(1)请求出这七天中平均每天行驶多少千米?
(2)若每天行驶100 km需用汽油6升,汽油价6.2元/升,请估计小明家一个月(按30天计)的汽油费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A1的坐标为(1,0),A2在y轴的正半轴上,且∠A1A2O=30°,过点A2作A2A3⊥A1A2,垂足为A2,交x轴于点A3;过点A3作A3A4⊥A2A3,垂足为A3,交y轴于点A4;过点A4作A4A5⊥A3A4,垂足为A4,交x轴于点A5;过点A5作A5A6⊥A4A5,垂足为A5,交y轴于点A6;…按此规律进行下去,则点A2016的纵坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)经过A(﹣3,0)、B(5,0)、C(0,5)三点,O为坐标原点
(1)求此抛物线的解析式;
(2)若把抛物线y=ax2+bx+c(a≠0)向下平移个单位长度,再向右平移n(n>0)个单位长度得到新抛物线,若新抛物线的顶点M在△ABC内,求n的取值范围;
(3)设点P在y轴上,且满足∠OPA+∠OCA=∠CBA,求CP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把抛物线y=2x2先向左平移3个单位,再向上平移4个单位,所得抛物线的函数表达式为( )
A.y=2(x+3)2+4
B.y=2(x+3)2﹣4
C.y=2(x﹣3)2﹣4
D.y=2(x﹣3)2+4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将抛物线y=2x2的图象先向右平移2个单位,再向上平移3个单位后,得到的抛物线的解析式是( )
A.y=2(x﹣2)2﹣3
B.y=2(x﹣2)2+3
C.y=2(x+2)2﹣3
D.y=2(x+2)2+3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com