精英家教网 > 初中数学 > 题目详情
2.中华文明,源远流长;中华诗词,寓意深广.为了传承优秀传统文化,我市某校团委组织了一次全校2000名学生参加的“中国诗词大会”海选比赛,赛后发现所有参赛学生的成绩均不低于50分,为了更好地了解本次海选比赛的成绩分布情况,随机抽取了其中200名学生的海选比赛成绩(成绩x取整数,总分100分)作为样本进行整理,得到下列统计图表:
抽取的200名学生海选成绩分组表
 组别海选成绩x 
 A组 50≤x<60
 B组 60≤x<70
 C组 70≤x<80
 D组 80≤x<90
 E组 90≤x<100
请根据所给信息,解答下列问题:
(1)请把图1中的条形统计图补充完整;(温馨提示:请画在答题卷相对应的图上)
(2)在图2的扇形统计图中,记表示B组人数所占的百分比为a%,则a的值为15,表示C组扇形的圆心角θ的度数为72度;
(3)规定海选成绩在90分以上(包括90分)记为“优等”,请估计该校参加这次海选比赛的2000名学生中成绩“优等”的有多少人?

分析 (1)用随机抽取的总人数减去A、B、C、E组的人数,求出D组的人数,从而补全统计图;
(2)用B组抽查的人数除以总人数,即可求出a;用360乘以C组所占的百分比,求出C组扇形的圆心角θ的度数;
(3)用该校参加这次海选比赛的总人数乘以成绩在90分以上(包括90分)所占的百分比,即可得出答案.

解答 解:(1)D的人数是:200-10-30-40-70=50(人),
补图如下:


(2)B组人数所占的百分比是$\frac{30}{200}$×100%=15%,
则a的值是15;
C组扇形的圆心角θ的度数为360×$\frac{40}{200}$=72°;
故答案为:15,72;

(3)根据题意得:
2000×$\frac{70}{200}$=700(人),
答:估计该校参加这次海选比赛的2000名学生中成绩“优等”的有700人.

点评 本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

12.某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边用长为30米的篱笆围成,已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由;
(3)当这个苗圃园的面积不小于100平方米时,直接写出x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,已知?ABCD的三个顶点A(n,0)、B(m,0)、D(0,2n)(m>n>0),作?ABCD关于直线AD的对称图形AB1C1D
(1)若m=3,试求四边形CC1B1B面积S的最大值;
(2)若点B1恰好落在y轴上,试求$\frac{n}{m}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买60元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为y1(元),在乙采摘园所需总费用为y2(元),图中折线OAB表示y2与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克30元;
(2)求y1、y2与x的函数表达式;
(3)在图中画出y1与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.化简:$\frac{x+3}{{x}^{2}-4x+4}$÷$\frac{{x}^{2}+3x}{(x-2)^{2}}$=$\frac{1}{x}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.数学活动-旋转变换
(1)如图①,在△ABC中,∠ABC=130°,将△ABC绕点C逆时针旋转50°得到△A′B′C,连接BB′,求∠A′B′B的大小;
(2)如图②,在△ABC中,∠ABC=150°,AB=3,BC=5,将△ABC绕点C逆时针旋转60°得到△A′B′C,连接BB′,以A′为圆心,A′B′长为半径作圆.
(Ⅰ)猜想:直线BB′与⊙A′的位置关系,并证明你的结论;
(Ⅱ)连接A′B,求线段A′B的长度;
(3)如图③,在△ABC中,∠ABC=α(90°<α<180°),AB=m,BC=n,将△ABC绕点C逆时针旋转2β角度(0°<2β<180°)得到△A′B′C,连接A′B和BB′,以A′为圆心,A′B′长为半径作圆,问:角α与角β满足什么条件时,直线BB′与⊙A′相切,请说明理由,并求此条件下线段A′B的长度(结果用角α或角β的三角函数及字母m、n所组成的式子表示)

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.计算5+(-3)的结果为2.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,一次函数y1=x+1的图象与反比例函数y2=$\frac{k}{x}$(x>0)的图象交于点M,作MN⊥x轴,N为垂足,且ON=1
(1)在第一象限内,当x取何值时,y1>y2?(根据图象直接写出结果)
(2)求反比例函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.下列等式错误的是(  )
A.(2mn)2=4m2n2B.(-2mn)2=4m2n2C.(2m2n23=8m6n6D.(-2m2n23=-8m5n5

查看答案和解析>>

同步练习册答案