精英家教网 > 初中数学 > 题目详情
(2006•南通)已知关于x的一元二次方程x2-(m-1)x+m+2=0,
(1)若方程有两个相等的实数根,求m的值;
(2)若方程的两实数根之积等于m2-9m+2,求m的值.
【答案】分析:(1)由于方程有两个相等的实数根,所以可据根的判别式来确定m的值;
(2)根据根与系数的关系来确定m的值,最后要根据判别式来取舍m的值.
解答:解:(1)∵△=b2-4ac=(m-1)2-4×(m+2)=m2-6m-7,
又∵方程有两个相等的实数根,
∴m2-6m-7=0,解得m1=-1,m2=7;
(2)由题意可知,m+2=m2-9m+2,
解得m1=0,m2=10,
∵当m=0时,△<0,此时原方程没有实数根,
∴m=10.
点评:总结:
1:一元二次方程根的情况与判别式△的关系:
(1)△>0?方程有两个不相等的实数根;
(2)△=0?方程有两个相等的实数根;
(3)△<0?方程没有实数根.
2:若一元二次方程有实根,则根与系数的关系为:x1+x2=,x1•x2=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2006•南通)已知∠α=35°19′,则∠α的余角等于(  )

查看答案和解析>>

科目:初中数学 来源:2010年中考数学模拟卷(6)(解析版) 题型:解答题

(2006•南通)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:2010年广东省广州市中考数学模拟试卷三(解析版) 题型:选择题

(2006•南通)已知二次函数y=2x2+9x+34,当自变量x取两个不同的值x1,x2时,函数值相等,则当自变量x取x1+x2时的函数值与( )
A.x=1时的函数值相等
B.x=0时的函数值相等
C.x=时的函数值相等
D.x=-时的函数值相等

查看答案和解析>>

科目:初中数学 来源:2009年吉林省长春市实验中学初三第六次月考数学试卷(解析版) 题型:解答题

(2006•南通)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.

查看答案和解析>>

科目:初中数学 来源:2009年河北省中考数学模拟试卷(四)(解析版) 题型:解答题

(2006•南通)已知抛物线y=ax2+bx+c经过A,B,C三点,当x≥0时,其图象如图所示.
(1)求抛物线的解析式,写出抛物线的顶点坐标;
(2)画出抛物线y=ax2+bx+c当x<0时的图象;
(3)利用抛物线y=ax2+bx+c,写出x为何值时,y>0.

查看答案和解析>>

同步练习册答案