精英家教网 > 初中数学 > 题目详情
(2009•自贡)如图,若等边△ABC的边长为6cm,内切圆⊙O分别切三边于点D,E,F,则阴影部分的面积是(  )
分析:连接OA,OE,OF,OD,AD,则AD过O,求出BD、AD,求出三角形ABC的面积,根据S△OBC=
1
3
S△ABC,求出OD,求出∠BOC,根据扇形的面积公式求出即可.
解答:解:连接OA,OE,OF,OD,AD,则AD过O,
∵AB=AC,AD⊥BC,
∴BD=DC=3,
由勾股定理得:AD=
AB2-BD2
=
62-32
=3
3

∴S△ABC=
1
2
BC×AD=
1
2
×6×3
3
=9
3

∵等边三角形ABC的内切圆⊙O分别且AB、BC、AC于F、D、E,
∴OF⊥AB,OD⊥BC,OE⊥AC,
∵AB=BC=AC=6,OD=OE=OF,
∴S△AOC=S△OBC=S△OAC
∴S△OBC=
1
3
S△ABC=3
3

1
2
BC×OD=3
3

1
2
×6×OD=3
3

∴OD=
3

∵⊙O是等边△ABC的内切圆,
∴∠OBC=
1
2
∠ABC=30°,
同理∠OCB=30°,
∴∠BOC=180°-30°-30°=120°,
∴阴影部分的面积是:
120π×
3
× 
3
360
=π.
故选A.
点评:本题考查了扇形的面积,三角形的面积,勾股定理,三角形的内切圆,等边三角形性质等知识点的应用,关键是求出OD的长和∠BOC的度数,主要考查学生综合运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2009•自贡)如图是由几个相同的小正方体搭成几何体的三视图,则搭成这个几何体的小正方体的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•自贡)如图,△ABC是等边三角形,D是BC边上一点,△ABD经过旋转后到达△ACE的位置.
(1)旋转中心是哪一点?
(2)旋转的最小角度是多少度?
(3)若M是AB的中点,那么经过上述旋转后,点M转到了什么位置?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•自贡)如图,小华用手电测量学校食堂的高度,在P处放一水平的平面镜,光线从A出发,经平面镜反射后刚刚射到食堂顶部C处,已知AB⊥BD,CD⊥BD,且AB=1.2m,BP=1.8m,PD=12m,那么食堂的高度是
8m
8m

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•自贡)如图,⊙O与△ABC中AB、AC的延长线及BC边相切,且∠ACB=90°,∠A,∠B,∠C所对的边长依次为3,4,5,则⊙O的半径是
2
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2009•自贡)如图,把矩形纸片ABCD沿EF折叠,使点B落在AD边上的点B′处,点A落在A′处.
(1)求证:B′E=BF;
(2)设AE=a,AB=b,BF=c,试猜想a、b、c之间有何等量关系,并给予说明.

查看答案和解析>>

同步练习册答案