A. | 5 | B. | 6 | C. | 9 | D. | 13 |
分析 首先证明△ABE≌△BCF,推出AE=BF,EB=CF,再利用勾股定理求出AB2,即可解决问题.
解答 解:∵四边形ABCD是正方形,
∴∠ABC=90°,AB=BC,
∵∠ABE+∠CBF=90°,∠ABE+∠BAE=90°,
∴∠BAE=∠CBF,
∵AE⊥EF,CF⊥EF,
∴∠AEB=∠CFB=90°,
在△ABE和△BCF中,
$\left\{\begin{array}{l}{∠BAE=∠CBF}\\{∠AEB=∠CFB}\\{AB=BC}\end{array}\right.$,
∴△ABE≌△BCF,
∴AE=BF=2,EB=CF=3,
∴AB2=AE2+EB2=22+32=13,
∴正方形ABCD面积=AB2=13.
故选D.
点评 本题考查正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是正确寻找全等三角形,灵活应用勾股定理解决问题,属于中考常考题型.
科目:初中数学 来源: 题型:选择题
A. | 80° | B. | 82° | C. | 83° | D. | 85° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com