10£®Ä³µê¹º½øÒ»ÖÖ½ñÄêÐÂÉÏÊеÄÊÎÆ·½øÐÐÏúÊÛ£¬ÊÎÆ·µÄ½ø¼ÛΪÿ¼þ40Ôª£¬ÊÛ¼ÛΪÿ¼þ60Ôª£¬Ã¿Ô¿ÉÂô³ö300¼þ£¬Êг¡µ÷²é·´Ó³£ºµ÷Õû¼Û¸ñʱ£¬ÊÛ¼ÛÿÕÇ1ԪÿÔÂÒªÉÙÂô10¼þ£¬ÊÛ¼ÛÿϽµ1ԪÿÔÂÒª¶àÂô20¼þ£¬ÎªÁË»ñµÃ¸ü´óµÄÀûÈó£¬ÏÖ½«ÉÌÆ·ÊÛ¼Ûµ÷ÕûΪ60+x£¨Ôª/¼þ£©£¨x£¾0¼´ÊÛ¼ÛÉÏÕÇ£¬x£¼0¼´ÊÛ¼ÛϽµ£©£¬Ã¿ÔÂÉÌÆ·ÏúÁ¿Îªy£¨¼þ£©£¬ÔÂÀûÈóΪw£¨Ôª£©£®
£¨1£©Ö±½Óд³öyÓëxÖ®¼äµÄº¯Êý¹Øϵʽ£»
£¨2£©µ±ÏúÊÛ¼Û¸ñÊǶàÉÙʱ²ÅÄÜʹÔÂÀûÈó×î´ó£¿Çó×î´óÔÂÀûÈó£¿
£¨3£©ÎªÁËʹÿÔÂÀûÈó²»ÉÙÓÚ6000ÔªÓ¦ÈçºÎ¿ØÖÆÏúÊÛ¼Û¸ñ£¿

·ÖÎö £¨1£©Ö±½Ó¸ù¾ÝÌâÒâÊÛ¼ÛÿÕÇ1ԪÿÔÂÒªÉÙÂô10¼þ£»ÊÛ¼ÛÿϽµ1ԪÿÔÂÒª¶àÂô20¼þ£¬½ø¶øµÃ³öµÈÁ¿¹Øϵ£»
£¨2£©ÀûÓÃÿ¼þÀûÈó¡ÁÏúÁ¿=×ÜÀûÈ󣬽ø¶øÀûÓÃÅä·½·¨Çó³ö¼´¿É£»
£¨3£©ÀûÓú¯ÊýͼÏó½áºÏÒ»Ôª¶þ´Î·½³ÌµÄ½â·¨µÃ³ö·ûºÏÌâÒâµÄ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÌâÒâ¿ÉµÃ£ºy=$\left\{\begin{array}{l}{300-10x}&{£¨0¡Üx¡Ü30£©}\\{300-20x}&{£¨-20¡Üx£¼0£©}\end{array}\right.$£»

£¨2£©ÓÉÌâÒâ¿ÉµÃ£ºw=$\left\{\begin{array}{l}{£¨20+x£©£¨300-10x£©}&{£¨0¡Üx¡Ü30£©}\\{£¨20+x£©£¨300-20x£©}&{£¨-20¡Üx£¼0£©}\end{array}\right.$£¬
»¯¼òµÃ£ºw=$\left\{\begin{array}{l}{-10{x}^{2}+100x+6000}&{£¨0¡Üx¡Ü30£©}\\{-20{x}^{2}-100x+6000}&{£¨-20¡Üx£¼0£©}\end{array}\right.$£¬
¼´w=$\left\{\begin{array}{l}{-10£¨x-5£©^{2}+6250}&{£¨0¡Üx¡Ü30£©}\\{-20£¨x+\frac{5}{2}£©^{2}+6125}&{£¨-20¡Üx£¼0£©}\end{array}\right.$£¬
ÓÉÌâÒâ¿ÉÖªxӦȡÕûÊý£¬¹Êµ±x=-2»òx=-3ʱ£¬w£¼6125£¬
x=5ʱ£¬W=6250£¬
¹Êµ±ÏúÊÛ¼Û¸ñΪ65Ԫʱ£¬ÀûÈó×î´ó£¬×î´óÀûÈóΪ6250Ôª£»

£¨3£©ÓÉÌâÒâw¡Ý6000£¬Èçͼ£¬

Áîw=6000£¬
½«w=6000´øÈë-20¡Üx£¼0ʱ¶ÔÓ¦µÄÅ×ÎïÏß·½³Ì£¬¼´6000=-20£¨x+$\frac{5}{2}$£©2+6125£¬
½âµÃ£ºx1=-5£¬
½«w=6000´øÈë0¡Üx¡Ü30ʱ¶ÔÓ¦µÄÅ×ÎïÏß·½³Ì£¬¼´6000=-10£¨x-5£©2+6250£¬
½âµÃx2=0£¬x3=10£¬
×ÛÉϿɵã¬-5¡Üx¡Ü10£¬
¹Ê½«ÏúÊÛ¼Û¸ñ¿ØÖÆÔÚ55Ôªµ½70ÔªÖ®¼ä£¨º¬55ÔªºÍ70Ôª£©²ÅÄÜʹÿÔÂÀûÈó²»ÉÙÓÚ6000Ôª£®

µãÆÀ ´ËÌâÖ÷Òª¿¼²éÁ˶þ´Îº¯ÊýµÄÓ¦ÓÃÒÔ¼°Åä·½·¨Çó¶þ´Îº¯Êý×îÖµµÈ֪ʶ£¬ÀûÓú¯ÊýͼÏóµÃ³öxµÄÈ¡Öµ·¶Î§ÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®½â²»µÈʽ×飺$\left\{{\begin{array}{l}{\frac{1-2x}{3}¡Üx+2}\\{2x+2£¾2£¨{2x-1}£©}\end{array}}\right.$£®°ÑËüµÄ½â¼¯ÔÚÊýÖáÉϱíʾ³öÀ´£¬²¢Ð´³öÕâ¸ö²»µÈʽ×éµÄÕûÊý½â£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®ÈçͼÊÇÒ»¸öСÕý·½ÌåµÄÕ¹¿ªÍ¼£¬°ÑÕ¹¿ªÍ¼ÕÛµþ³ÉСÕý·½Ìåºó£¬ÓС°½¨¡±×ÖÒ»ÃæµÄÏà¶ÔÃæÉϵÄ×ÖÊÇ£¨¡¡¡¡£©
A£®ÇåB£®½àC£®ÏçD£®´å

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®Òòʽ·Ö½â£º
£¨1£©-a-2a2-a3           
£¨2£©£¨x2-2xy£©2+2y2£¨x2-2xy£©+y4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®ÒÑÖªº¯Êýy=£¨m+1£©x${\;}^{{m}^{2}-3m-2}$+£¨m-1£©x£¨mÊdz£Êý£©£®mΪºÎֵʱ£¬ËüÊÇÒ»´Îº¯Êý£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏBAC=90¡ã£¬ÒÔABΪֱ¾¶µÄ°ëÔ²O½»BC±ßÓÚµãD£¬µãEÔÚBC±ßÉÏ£¬ÇÒAE=AB£¬Á¬½áAE½»°ëÔ²OÓÚµãF£¬Á¬½áBF£®
£¨1£©ÇóÖ¤£º¡ÏC=¡ÏEBF£®
£¨2£©ÈôAF=4£¬$\frac{AB}{AC}=\frac{2}{3}$£¬Çó°ëÔ²OµÄÖ±¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬AB¡ÎCD£¬AE¡¢DF·Ö±ðÊÇ¡ÏBAD¡¢¡ÏCDAµÄ½Çƽ·ÖÏߣ¬ÄÇôAEÓëDFÊÇ·ñƽÐУ¿Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÉèÖ±Ïßy=kxÓëË«ÇúÏßy=$\frac{m}{x}$ÏཻÓÚA£¨x1£¬y1£©¡¢B£¨x2£¬y2£©Á½µã£¬Çó£¨x1+x2£©£¨y1+y2£©µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÖ±Ïßm¡În£¬µãCÊÇÖ±ÏßmÉÏÒ»µã£¬µãDÊÇÖ±ÏßnÉÏÒ»µã£¬CDÓëÖ±Ïßm¡¢n²»´¹Ö±£¬µãPΪÏ߶ÎCDµÄÖе㣮
£¨1£©²Ù×÷·¢ÏÖ£ºÖ±Ïßl¡Ím£¬·Ö±ð½»m¡¢nÓÚµãA¡¢B£¬µ±µãBÓëµãDÖغÏʱ£¨Èçͼ1£©£¬Á¬½áPA£¬ÇëÖ±½Óд³öÏ߶ÎPAÓëPBµÄÊýÁ¿¹Øϵ£ºPA=PB£®
£¨2£©²ÂÏëÖ¤Ã÷£ºÔÚͼ1µÄÇé¿öÏ£¬°ÑÖ±ÏßlÏòÓÒƽÒƵ½Èçͼ2µÄλÖã¬ÊÔÎÊ£¨1£©ÖеÄPAÓëPB
µÄ¹ØϵʽÊÇ·ñÈÔÈ»³ÉÁ¢£¿Èô³ÉÁ¢£¬Çë¸øÓèÖ¤Ã÷£»Èô²»³ÉÁ¢£¬Çë˵Ã÷ÀíÓÉ£®
£¨3£©ÑÓÉì̽¾¿£ºÔÚͼ2µÄÇé¿öÏ£¬°ÑÖ±ÏßlÈƵãAÐýת£¬Ê¹µÃ¡ÏAPB=90¡ã£¨Èçͼ3£©£¬ÈôÁ½Æ½ÐÐÏßm¡¢nÖ®¼äµÄ¾àÀëΪ2k£¬ÇóÖ¤£ºPA•PB=k•AB£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸