精英家教网 > 初中数学 > 题目详情
如图所示,在直角坐标系中,?ABCO的点A(4,0)、B(3,2).点P从点O出发,以2单位/秒的速度向点A运动,同时点Q由点B出发,以1单位/秒的速度向点C运动,当其中一点到达终点时,另一点也随之停止.过点Q作QN⊥x轴于点N,连接AC交NQ于点M,连接PM.设动点Q运动的时间为t秒
(1)点C的坐标为
 

(2)点M的坐标为
 
(用含t的代数式表示);
(3)求△PMA的面积S与时间t的函数关系式;是否存在t的值,使△PMA的面积最大?若存在,求出t的值;精英家教网若不存在,请说明理由.
分析:(1)由于四边形ABCO是平行四边形,CB=OA,C与B等高,故C点坐标可以求出.
(2)点M横坐标为(3-t),又
AN
CQ
=
NM
MQ
,求得M点纵坐标.
(3)由求得的M点坐标可求得△PMA的面积S=
1
2
•PA•MN,列出函数关系式,求得最大值.
解答:解:(1)C(-1,2)

(2)M(3-t,
2+2t
5


(3)∵点P速度第秒2个单位,
∴QP=2t,AP=4-2t;
∴S=
1
2
AP•MN=
1
2
(4-2t)
2+2t
5
=-
2
5
(t2-t-2)=-
2
5
(t-
1
2
)2+
9
10

∴当t=
1
2
时,S有最大值为
9
10
点评:本题考查了通过动点运动列出函数关系式,并求得最值,综合性强.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,O为原点,点A的坐标为(10,0),点B在第一象限内,BO=5,精英家教网sin∠BOA=
35

求:(1)点B的坐标;(2)cos∠BAO的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大丰市一模)如图所示,在直角坐标平面内,函数y=
mx
(x>0,m是常数)
的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

1.若△ABD的面积为4,求点B的坐标

2.求证:DC∥AB

3.四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连结AD、DC、CB.

【小题1】若△ABD的面积为4,求点B的坐标
【小题2】求证:DC∥AB
【小题3】四边形ABCD能否为菱形?如果能,请求出四边形ABCD 为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2012年江苏省盐城市大丰市中考数学一模试卷(解析版) 题型:解答题

如图所示,在直角坐标平面内,函数的图象经过A(1,4),B(a,b),其中a>1.过点A作x轴垂线,垂足为C,过点B作y轴垂线,垂足为D,连接AD、DC、CB.
(1)若△ABD的面积为4,求点B的坐标;
(2)求证:DC∥AB;
(3)四边形ABCD能否为菱形?如果能,请求出四边形ABCD为菱形时,直线AB的函数解析式;如果不能,请说明理由.

查看答案和解析>>

同步练习册答案