【题目】程大位是我国明朝商人,珠算发明家,他60岁时完成的《直指算法综宗》是东方古代数学名著,详述了传统的珠算规则,确立了算盘用法,书中有如下问题:一百馒头一百僧,大僧三个更无争,小僧三人分一个,大小和尚得几丁,意思是:有100个和尚分100个馒头,如果大和尚1人分3个,小和尚3人分1个,正好分完,大、小和尚各有多少人,则小和尚有__________人.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E分别是边BC、AC的中点,过点A作AF∥BC交DE的延长线于F点,连接AD、CF.
(1)求证:四边形ADCF是平行四边形;
(2)当△ABC满足什么条件时,四边形ADCF是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在下列解答中,填写适当的理由或数学式:
(1)∵EB∥DC, (已知)
∴∠DAE=∠__. ( ___________________________________)
(2)∵∠BCF+∠AFC=180°,(已知)
∴ ____∥___. ( ___________________________________)
(3)∵ ____∥___, (已知)
∴∠EFA=∠ECB . ( ___________________________________)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(分)如图,管中放置着三根同样的绳子, , .
()小明从这三根绳子中随机选一根,恰好选中绳子的概率是__________.
()小明先从左端, , 三个绳头中随机选两个打一个结,再从右端, , 三个绳头中随机选两个打一个结,求这三根绳子能连结成一根长绳的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,12×12的正方形网格中的每个小正方形的边长都是1,正方形的顶点叫做格点.矩形ABCD的四个顶点A,B,C,D都在格点上,将△ADC绕点A顺时针方向旋转得到△AD′C′,点C与点C′为对应点.
(1)在正方形网格中确定D′的位置,并画出△AD′C′;
(2)若边AB交边C′D′于点E,求AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,网格中的每一个小方格都是是边长为 1 个单位的正方形,只能使用无刻度直尺,请以格点为顶点按照以下要求作图:
(1)请在图 1 中画出ABC,其中AC=,AB=,BC=;
(2)请在图 2 中画出面积为 8 的正方形 ABCD,且找出点 O,使得经过点 O 的所有直线都平分正方形ABCD 的面积,保留作图痕迹.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为提高市民的环保意识,倡导“节能减排,绿色出行”,某市计划在城区投放一批“共享单车”这批单车分为A,B两种不同款型,其中A型车单价400元,B型车单价320元.
(1)今年年初,“共享单车”试点投放在某市中心城区正式启动.投放A,B两种款型的单车共100辆,总价值36800元.试问本次试点投放的A型车与B型车各多少辆?
(2)试点投放活动得到了广大市民的认可,该市决定将此项公益活动在整个城区全面铺开.按照试点投放中A,B两车型的数量比进行投放,且投资总价值不低于184万元.请问城区10万人口平均每100人至少享有A型车与B型车各多少辆?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有甲、乙两个不透明的布袋,甲袋中有2个完全相同的小球,分别标有数字0和-2;乙袋中有3个完全相同的小球,分别标有数字-2,0和1,小明从甲袋中随机取出1个小球,记录标有的数字为x,再从乙袋中随机取出1个小球,记录标有的数字为y,这样确定了点Q的坐标(x,y).
(1)写出点Q所有可能的坐标;
(2)求点Q在x轴上的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com