精英家教网 > 初中数学 > 题目详情

【题目】如图,AC的直径,AB相切于点A,四边形ABCD是平行四边形,BC于点E

判断直线CD的位置关系,并说明理由;

的半径为5cm,弦CE的长为8cm,求AB的长.

【答案】(1)直线CD相切,证明详见解析;(2)

【解析】

1)根据题意,易得∠BAC=90°,又由四边形ABCD是平行四边形,结合平行四边形的性质ABCD,可得∠BAC=DCA=90°,故直线CD与⊙O相切,
2)连接AE,易得△CAE∽△CBA,进而可得,在RtAEC中,由勾股定理可得AE的值,代入关系式,可得答案.

解:直线CD相切,

理由:的直径,AB相切于点A

四边形ABCD是平行四边形,

直线CD相切;

连接AE

为圆的直径,

相切于点A

根据勾股定理可得,

代入关系式得,

解得

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】随着移动终端设备的升级换代,手机已经成为我们生活中不可缺少的一部分,为了解中学生在假期使用手机的情况(选项:A.和同学亲友聊天;B.学习;C.购物;D.游戏;E.其它),端午节后某中学在全校范围内随机抽取了若干名学生进行调查,得到如下图表(部分信息未给出):根据以上信息解答下列问题:

(1)这次被调查的学生有多少人?

(2)求表中m,n,p的值,并补全条形统计图.

(3)若该中学约有800名学生,估计全校学生中利用手机购物或玩游戏的共有多少人?并根据以上调查结果,就中学生如何合理使用手机给出你的一条建议.

选项

频数

频率

A

10

m

B

n

0.2

C

5

0.1

D

p

0.4

E

5

0.1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:

x

﹣2

﹣1

0

1

2

y

0

4

6

6

4

从上表可知,下列说法中,错误的是( )

A. 抛物线于x轴的一个交点坐标为(﹣2,0)

B. 抛物线与y轴的交点坐标为(0,6)

C. 抛物线的对称轴是直线x=0

D. 抛物线在对称轴左侧部分是上升的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知半圆与四边形的边都相切,切点分别为,半径,则___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个三角形一条边的平方等于另两条边的乘积,我们把这个三角形叫做比例三角形.

已知是比例三角形,,请直接写出所有满足条件的AC的长;

如图1,在四边形ABCD中,,对角线BD平分求证:是比例三角形.

如图2,在的条件下,当时,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一枚质地均匀的正六面体骰子的六个面分别标有数字,如图2,正方形的顶点处各有一个圈,跳圈游戏的规则为:游戏者每掷一次骰子,骰子朝上的那面上的数字是几,就沿正方形的边按顺时针方向连续跳几个边长。如:若从圈起跳,第一次掷得,就顺时针连续跳个边长,落在圈;若第二次掷得,就从圈开始顺时针连续跳个边长,落得圈设游戏者从圈起跳.

1)小贤随机掷一次骰子,求落回到圈的概率.

2)小南随机掷两次骰子,用列表法求最后落回到圈的概率,并指出他与小贤落回到圈的可能性一样吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y1=x2+mx+n的图象经过点P﹣31),对称轴是经过(﹣10)且平行于y轴的直线.

(1)求m,n的值.

(2)如图,一次函数y2=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.

(3)直接写出y1>y2时x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线y=2x2+mx+n经过点A0,﹣2),B34.

(1)求抛物线的表达式及对称轴;

(2)设点B关于原点的对称点为C,点D是抛物线对称轴上一动点,且点D纵坐标为t,记抛物线在AB之间的部分为图象G(包含AB两点).若直线CD与图象G有公共点,结合函数图象,求点D纵坐标t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2013年四川泸州8分)如图,为了测出某塔CD的高度,在塔前的平地上选择一点A,用测角仪测得塔顶D的仰角为30°,在A、C之间选择一点B(A、B、C三点在同一直线上).用测角仪测得塔顶D的仰角为75°,且AB间的距离为40m

(1)求点B到AD的距离;

(2)求塔高CD(结果用根号表示).

查看答案和解析>>

同步练习册答案