【题目】如图1所示,在ABCD中,AB=3cm,BC=5cm,AC⊥AB,△ACD沿射线AC的方向匀速平移得到△PNM,速度为1cm/s,同时,点Q从点C出发,沿射线CB方向匀速运动,速度为1cm/s,当△PNM停止平移时,点Q也停止运动,如图2所示,设运动时间为t(s)(0<t<4).
(1)当t为何值时,PQ∥MN?
(2)设△QMC的面积为y(cm2),求y与t之间的函数关系式;
(3)是否存在某一时刻t,使得PQ=QM,若存在,求出t的值;若不存在,请说明理由.
【答案】
(1)
解:如图1,由题意得:CQ=AP=t,
在Rt△ABC中,由勾股定理得AC= = =4,
∴CP=4﹣t,
由平移的性质可得MN∥AB,
∵PQ∥MN,
∴PQ∥AB,
∴ ,即 ,
解得t= ,
则当t为何值时,PQ∥MN
(2)
解:如图2,过点P作PF⊥BC于点F,过点A作AE⊥BC于点E,
由S△ABC= AB×AC= AE×BC,
×3×4= ×5AE,
可得:AE= ,
则由勾股定理易得:CE= = = .
∵PD⊥BC,AE⊥BC,
∴AE∥PD,
∴△CPD∽△CAE,
∴ ,即
∴PD= ,CD= ,
∵PM∥BC,
∴点M到BC的距离h=PD= ,
∴△QCM的面积y= CQ×h= × =﹣ + (0<t<4)
(3)
解:如图3,过点Q作QD⊥PM于点D,QD交AC于点H.
∵PQ=MQ,
∴PD=DM= ,且DQ⊥BC.
在Rt△ABC中,AC=4,AP=t,QC=t.
∵∠A=∠HQC,∠ACB=∠QCH,
∴△CQH∽△CAB,
∴ ,即 ,
∴CH= t,
∴PH=AC﹣AP﹣CH=4﹣t﹣ t=4﹣ t,
易证△PHD∽△CBA,
∴ ,
即 ,
解得t= .
∴当t= 时,PQ=QM.
【解析】(1)如图1,先根据题意得:CQ=AP=t,利用勾股定理求AC的长,根据PQ∥AB,列比例式可求得t的值;(2)如图2,作辅助线,构建相似三角形,利用面积法得:S△ABC= AB×AC= AE×BC,可得:AE= ,由勾股定理易得:CE= .证明△CPD∽△CAE,列比例式 ,求PD和CD的长,根据面积公式求△QCM的面积y;(3)如图3,作辅助线,构建相似三角形,证明△CQH∽△CAB,列比例式得: ,表示CH= t,则PH=AC﹣AP﹣CH=4﹣ t,易证△PHD∽△CBA,列式可求得t的值.
【考点精析】利用勾股定理的概念和平行四边形的性质对题目进行判断即可得到答案,需要熟知直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
科目:初中数学 来源: 题型:
【题目】有三张正面分别标有数字﹣3,1,3的不透明卡片,它们除数字外都相同,现将它们背面朝上,洗匀后从三张卡片中随机地抽取一张,放回卡片洗匀后,再从三张卡片中随机地抽取一张.
(1)试用列表或画树状图的方法,求两次抽取的卡片上的数字之积为负数的概率;
(2)求两次抽取的卡片上的数字之和为非负数的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D垂直于AC的直线交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)如果AD=5,AE=4,求AC长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在不透明的布袋中装有1个白球,2个红球,它们除颜色外其余完全相同.
(1)从袋中任意摸出两个球,试用树状图或表格列出所有等可能的结果,并求摸出的球恰好是两个红球的概率;
(2)若在布袋中再添加x个白球,充分搅匀,从中摸出一个球,使摸到白球的概率为 ,求添加的白球个数x.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】请从以下两个小题中任选一个作答,若多选,则按所选的第一小题计分.
①若单项式﹣xmyn+4 与 5x2y 是同类项,则 nm 的值为____.
②实施西部大开发战略是党中央的重大决策,我国国土面积约为960 万平方千米,而我国西部地区的面积占我国国土面积的 ,用科学记数法表示我国西部地区的面积约为_____平方千米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读理解:课外兴趣小组活动时,老师提出了如下问题:
如图1,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连接BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4.
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中.
(1)问题解决:受到(1)的启发,请你证明下面命题:如图2,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF.
①求证:BE+CF>EF;②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明;
(2)问题拓展:如图3,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,联结EF、CF,那么下列结论①∠DCF=∠BCD;②EF=CF;③S△BEC=2S△CEF;④∠DFE=3∠AEF.中一定成立是 (填序号).
图1 图2 图3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个三角形内有n个点,在这些点及三角形顶点之间用线段连接起来,使得这些线段互不相交,且又能把原三角形分割为不重叠的小三角形.如图:若三角形内有1个点时此时有3个小三角形;若三角形内有2个点时,此时有5个小三角形.则当三角形内有3个点时,此时有个小三角形;当三角形内有n个点时,此时有个小三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,O是AC上一动点(不与点A、C重合),过O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)OE与OF相等吗?证明你的结论;
(2)试确定点O的位置,使四边形AECF是矩形,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.
(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;
(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com